An analysis for the MHD boundary layer flow and heat transfer towards stretching sheet is carried out via symmetry analysis. A steady two-dimensional flow of an electrically conducting incompressible fluid flow over a stretching sheet. The flow permeated by a uniform transverse magnetic field. The governing partial dierential equations are reduced to a system of ordinarydierential equations by the scaling symmetries. The symmetry groups admitted by the corresponding boundary value problem are obtained by using special Lie group transformations. The scaling of group transformations is applied to the governing equations.The system remains invariant due to some relation among the parameters of the transformations. After finding two absolute invariants a third order ordinary dierential equation corresponding to momentum equation and second order dierential equation corresponding to energy equation are derived. The equations along with boundary conditions solved numerically. Numerical solutions of these equations are obtained by using Runge-Kutta-Fehlberg scheme. Further more attention is paid to the eects of some physical parameters magnetic field (Mn), Prandtl number (Pr), Eckert number (Ec) and uniform heat source/sink, on velocity and thermal boundary layer. The results thus obtained are presented graphically and discussed.