mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impacts of thermo-physical properties of gas and liquid phases on design of absorber for CO2 capture using monoethanolamine
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-7328-1024
School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-6279-4446
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3485-5440
Show others and affiliations
2016 (English)In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 52, 190-200 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Absorption of CO2 with aqueous amines in post-combustion capture is characterized as a heat and mass transfer processes with chemical reaction, which is sensitively affected by the thermo-physical properties of fluids. In order to optimize the design of the absorber of CO2 capture process, in this paper, the impacts of thermo-physical properties on the column design were investigated. Furthermore, the property impacts on the capital cost of the absorber unit were also identified and analyzed. Results show that the gas phase density has the most significant effect on the column diameter. Underestimation of the gas phase density of 10% may result in an increase of about 6% of the column diameter. For the packing height, the liquid phase density has the most significant effect. 10% underestimation of the liquid phase density may result in an increase of 8% of the packing height. Moreover, the effect from the liquid phase viscosity is also significant. For the annual capital cost, the liquid phase density also shows the most significant effect. Underestimation of the liquid phase density of 10% leads to the cost overestimation of $1.4 million for the absorption column for a 400 MW coal-fired power plant. Therefore, the development of the flue gas density model and liquid phase density and viscosity models of the aqueous amine solution with CO2 loading should be prioritized.

Place, publisher, year, edition, pages
2016. Vol. 52, 190-200 p.
Keyword [en]
Chemical absorption, Density, Packing height, Post-combustion capture, Property impact, Viscosity, Carbon dioxide, Coal, Coal combustion, Combustion, Costs, Density (specific gravity), Fossil fuel power plants, Gases, Liquids, Mass transfer, Physical properties, Absorption columns, Coal-fired power plant, Heat and mass transfer process, Liquid phase viscosity, Post-combustion captures, Thermo-physical property, Density of gases
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-32406DOI: 10.1016/j.ijggc.2016.07.012ISI: 000381728300016Scopus ID: 2-s2.0-84978193479OAI: oai:DiVA.org:mdh-32406DiVA: diva2:950179
Available from: 2016-07-28 Created: 2016-07-28 Last updated: 2017-11-28Bibliographically approved
In thesis
1. Impacts of Thermo-Physical Properties on Chemical Absorption for CO2 Capture
Open this publication in new window or tab >>Impacts of Thermo-Physical Properties on Chemical Absorption for CO2 Capture
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Following the climate change mitigation target in Paris agreement, the global warming has to be limited to 2.0°C above the preindustrial levels. One of the potential methods is carbon capture and storage (CCS), which can significantly reduce the CO2 emissions from the vast point sources such as power plants, industries, and natural gas processes. The CCS covers four steps which are capture, conditioning, transport, and storage. For the capture part, post-combustion capture is easier to implement based on today’s technologies and infrastructure compared with pre-combustion and oxy-fuel combustion captures, since the radical changes in the structure of the existing plant are not required.

To design and operate different CCS processes, the knowledge of thermo-physical properties of the CO2 mixtures is of importance. In this thesis, the status and progress of the studies related to the impacts of the uncertainty in thermo-physical properties on the design and operation of the CCS processes were reviewed. The knowledge gaps and the priority of property model development were identified.

According to the identified knowledge gaps in the review, the impacts of thermo-physical properties which are the density, viscosity, and diffusivity of the gas and liquid phases, and the surface tension and heat capacity of the liquid phase on the design of the absorber column for the chemical absorption using aqueous monoethanolamine were quantitatively analyzed. An in-house rate-based absorption model was developed in MATLAB to simulate the absorption process, and the sensitivity study was done for each property. An economic evaluation was also performed to further estimate the impacts of the properties on the capital cost of the absorption unit. 

For column diameter of the absorber, the gas phase density shows the most significant impacts; while, the liquid phase density and viscosity show the most significant impacts on the design of the packing height and also the capital cost of the absorption unit. Therefore, developing the flue gas density model and liquid phase density and viscosity models of the aqueous solvents with CO2 loading should be prioritized.

Abstract [sv]

Enligt Parisavtalets mål för klimatförändringar ska den globala uppvärmningen begränsas till 2.0° C över förindustriella nivåer. En av de potentiella metoderna är avskiljning och lagring av koldioxid (CCS), som avsevärt kan minska CO2-utsläppen från stora punktkällor såsom kraftverk, industrier och naturgasprocesser. CCS omfattar fyra steg som är avskiljning, konditionering, transport och lagring. Avskiljning genom efterförbränning är lättare att genomföra baserat på dagens teknik och infrastruktur jämfört med avskiljning före förbränning och genom oxybränsle förbränning, eftersom radikala förändringar av de befintliga anläggningars struktur inte behövs.

För att utforma och driva olika CCS processer, är kunskap om termofysikaliska egenskaperna hos CO2 blandningarna av stor betydelse. I denna avhandling har status och framsteg för studier rörande effekterna av osäkerheten i termofysikaliska egenskaper på konstruktion och drift av CCS processer granskats. Kunskapsluckor och prioritering av utveckling av modeller för egenskaperna identifierades.

Enligt de i översynen identifierade kunskapsluckorna, har effekterna av de termofysikaliska egenskaperna densitet, viskositet och diffusivitet av gas- och vätskefaserna, och ytspänningen och värmekapacitet av vätskefasen på utformningen av absorptionskolonnen för kemisk absorption med användning av vattenhaltig monoetanolamin analyserats kvantitativt. En hastighetsbaserad absorptionsmodell har utvecklats i MATLAB för simulering av absorptionsprocessen och känslighetsanalys gjordes för varje egenskap. En ekonomisk utvärdering genomfördes också för att ytterligare uppskatta effekterna av egenskaperna på kapitalkostnaden för absorptionsenheten.

För bestämning av diametern av absorbatorns kolonn visar gasfasens densitet den mest betydande inverkan; medan vätskefasens densitet och viskositeten visar den mest betydande inverkan på utformningen av fyllmaterialets höjd och även kapitalkostnaderna för absorptionsenheten. Därför bör utveckling av modeller för rökgasens densitet och vätskefasens densitet och viskositet för det vattenbaserade lösningsmedlet med absorberad CO2 prioriteras.

Place, publisher, year, edition, pages
Västerås: Mälardalen University Press, 2016
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 249
National Category
Energy Engineering
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-34254 (URN)978-91-7485-306-3 (ISBN)
Presentation
2017-02-06, Pi, Mälardalens högskola, Västerås, 09:15 (English)
Opponent
Supervisors
Projects
VR CCS Project
Funder
Swedish Energy Agency, 36664-1
Available from: 2016-12-16 Created: 2016-12-15 Last updated: 2017-01-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Li, HailongYan, Jinyue

Search in DiVA

By author/editor
Nookuea, WarradaLi, HailongThorin, EvaYan, Jinyue
By organisation
Future Energy Center
In the same journal
International Journal of Greenhouse Gas Control
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf