mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using Safety Contracts to Guide the Integration of Reusable Safety Elements within ISO 26262
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-7382-8437
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-6952-1053
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-8461-0230
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-7235-6888
2016 (English)In: Proceedings - 2015 IEEE 21st Pacific Rim International Symposium on Dependable Computing, PRDC 2015, 2016, Vol. jan, 129-138 p.Conference paper, Published paper (Refereed)
Abstract [en]

Safety-critical systems usually need to comply with a domain-specific safety standard. To reduce the cost and time needed to achieve the standard compliance, reuse of safety-relevant components is not sufficient without the reuse of the accompanying artefacts. Developing reusable safety components out-of-context of a particular system is challenging, as safety is a system property, hence support is needed to capture and validate the context assumptions before integration of the reusable component and its artefacts in-context of the particular system. We have previously developed a concept of strong and weak safety contracts to facilitate systematic reuse of safety-relevant components and their accompanying artefacts. In this work we define a safety contracts development process and provide guidelines to bridge the gap between reuse of safety elements developed out-of-context of a particular system and their integration in the ISO 26262 safety standard. We use a real-world case for demonstration of the process.

Place, publisher, year, edition, pages
2016. Vol. jan, 129-138 p.
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-30010DOI: 10.1109/PRDC.2015.12ISI: 000380403300014Scopus ID: 2-s2.0-84964371842ISBN: 978-146739376-8 (print)OAI: oai:DiVA.org:mdh-30010DiVA: diva2:885723
Conference
21st IEEE Pacific Rim International Symposium on Dependable Computing, PRDC 2015; Zhangjiajie; China; 18 November 2015 through 20 November 2015; Category numberE5673; Code 118981
Projects
SYNOPSIS - Safety Analysis for Predictable Software Intensive Systems
Available from: 2015-12-20 Created: 2015-12-18 Last updated: 2016-08-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sljivo, IrfanGallina, BarbaraCarlson, JanHansson, Hans
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf