https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Wireless MAC Method with Support for Heterogeneous Data Traffic
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. TTTech Computertechnik AG, Vienna, Austria.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-6497-4099
TTTech Computertechnik AG, Vienna, Austria.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-2419-2735
2015 (English)In: IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 2015, p. 3869-3874, article id 7392703Conference paper, Published paper (Refereed)
Abstract [en]

An important aspect of any communication technology is its medium access method, being responsible for sharing the medium among users. For delay-sensitive applications, such as industrial control systems, timely and reliable channel access is of essence. Hence, existing protocols like HART and TTEthernet use a time-triggered medium access approach. However, as the nature of industrial control systems change and evolve, there is a growing need to provide wireless access and support data traffic with mixed requirements. While technologies like WirelessHART can offer timely and reliable access to the wireless medium, only one type of data traffic is usually supported. In this paper, we therefore propose and evaluate three different medium access methods for wireless communications, all capable of supporting three different data traffic classes: time-triggered, rate-constrained and best-effort traffic. In particular, different options on how to handle best-effort traffic, using scheduled time-slots or contention, are evaluated, showing for all the proposals different drawbacks and benefits depending on additional requirements on e.g., hardware, protocol overhead and resistance to interference.

Place, publisher, year, edition, pages
2015. p. 3869-3874, article id 7392703
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-29631DOI: 10.1109/IECON.2015.7392703ISI: 000382950703153Scopus ID: 2-s2.0-84973162673ISBN: 978-1-4799-1761-7 (print)OAI: oai:DiVA.org:mdh-29631DiVA, id: diva2:881499
Conference
41st Annual Conference of the IEEE Industrial Electronics Society, IECON 2015; Pacifico YokohamaYokohama; Japan; 9 November 2015 through 12 November 2015; Category numberCFP15IEC-ART; Code 119153
Projects
RetNet - The European Industrial Doctorate Programme on Future Real-Time NetworksAvailable from: 2015-12-10 Created: 2015-11-26 Last updated: 2016-12-22Bibliographically approved
In thesis
1. Medium Access Control for Wireless Networks with Diverse Real-Time and Reliability Requirements
Open this publication in new window or tab >>Medium Access Control for Wireless Networks with Diverse Real-Time and Reliability Requirements
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Wireless real-time networks are a natural step for deployments in industrial automation, automotive, avionics, or robotics targeting features such as improved mobility, reduced wiring costs, and easier more flexible network developments. However, the open transmission medium where wireless networks operate is generally more prone to interference and transmission errors caused by fading. Due to this, real-time communications is in general still provided by wired networks in many of these application fields. At the same time, wired and wireless standards traditionally associated with the consumer electronics application field (e.g., IEEE 802.3 "Ethernet" and IEEE 802.11 “WiFi”) are trying to find their way into industrial automation, automotive, avionics, and robotics use cases, since they provide features like high throughput and cheap hardware. Many times, applications with diverse real-time and reliability requirements have to co-exist, and often in hybrid wired-wireless networks to ensure compatibility with existing systems. Given this scenario, it is essential to provide support for data traffic with requirements ranging from real-time time-triggered and event-driven to non-real-time, and enable high reliability with respect to timing constraints, in the context of hybrid wired-wireless networks. This thesis aims at covering the aforementioned requirements by proposing a medium access control (MAC) solution suitable for wireless communications, with support for real-time traffic with diverse time and reliability requirements. The MAC layer is in charge of providing timely access to the transmission medium, and can be effectively used to increase reliability by means of, e.g., avoiding concurrent transmissions and performing retransmissions. To this end, a set of evaluation criteria is proposed to determine the suitability of a particular MAC method to meet the identified emerging requirements. These criteria include channel access delay, reliability, protocol overhead, capability to integrate with wired networks, and sensitivity to interference from collocated systems. Next, based on these requirements, a MAC protocol with a set of tunable features is proposed, and evaluated in terms of support for data traffic with different loads and distributions, i.e., emanating from different traffic classes, and from different number of senders. The evaluation is made both analytically, by calculating the worst case delay and, with the help of real-time schedulability analysis, determining the effective load required to guarantee real-time deadlines, as well as by means of computer simulations using the INET framework for OMNeT++ to determine the average delay. Finally, the thesis proposes a set of retransmission schemes to be used together with the proposed MAC protocols in order to improve the resistance against interference and transmission errors. For this, a set of interference patterns with different characteristics is proposed and applied in the simulator. The resulting MAC layer solution is designed to be used at the wireless segment of a hybrid wired-wireless network, and is able to schedule data traffic originating from three different classes: time-triggered, rate-constrained and best-effort. To achieve this, an additional collision domain introducing wireless segments is added to the real-time scheduler, as well as support for real-time retransmissions, to enable high reliability while keeping real-time deadlines.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2016
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 243
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-33264 (URN)978-91-7485-287-5 (ISBN)
Presentation
2016-11-11, Lambda, Mälardalen University, Västerås, 13:15 (English)
Opponent
Supervisors
Projects
RetNet - The European Industrial Doctorate Programme on Future Real-Time Networks
Funder
EU, FP7, Seventh Framework Programme, 607727
Available from: 2016-09-30 Created: 2016-09-27 Last updated: 2018-01-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Uhlemann, ElisabethBjörkman, Mats

Search in DiVA

By author/editor
Gutiérrez Peón, PabloUhlemann, ElisabethBjörkman, Mats
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 118 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf