Carbon Capture and Storage (CCS) is one of the most potential technologies to mitigate climate change. Using pipelines to transport CO2 from emission sources to storage sites is one of common and mature technologies. The design and operation of pipeline transport process requires careful considerations of thermo-physical properties. This paper studied the impact of properties, including density, viscosity, thermal conductivity and heat capacity, on the performance of CO2 pipeline transport. The pressure loss and temperature drop in steady state were calculated by using homogenous friction model and Sukhof temperature drop theory, respectively. The results of sensitivity study show that over-estimating density and viscosity increases the pressure loss while under-estimating of density and viscosity decreases it. Over-estimating density and heat capacity leads to lower temperature drop while underestimating of density and heat capacity result in higher temperature drop. This study suggests that the accuracy of property models for example, more accurate density model, should be developed for the CO2 transport design.