https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Property impacts on performance of CO2 pipeline transport
Royal Inst Technol, Sweden.
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-7328-1024
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-6279-4446
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3485-5440
Show others and affiliations
2015 (English)In: Energy Procedia, ISSN 1876-6102, Vol. 75, p. 2261-2267Article in journal (Refereed) Published
Abstract [en]

Carbon Capture and Storage (CCS) is one of the most potential technologies to mitigate climate change. Using pipelines to transport CO2 from emission sources to storage sites is one of common and mature technologies. The design and operation of pipeline transport process requires careful considerations of thermo-physical properties. This paper studied the impact of properties, including density, viscosity, thermal conductivity and heat capacity, on the performance of CO2 pipeline transport. The pressure loss and temperature drop in steady state were calculated by using homogenous friction model and Sukhof temperature drop theory, respectively. The results of sensitivity study show that over-estimating density and viscosity increases the pressure loss while under-estimating of density and viscosity decreases it. Over-estimating density and heat capacity leads to lower temperature drop while underestimating of density and heat capacity result in higher temperature drop. This study suggests that the accuracy of property models for example, more accurate density model, should be developed for the CO2 transport design. 

Place, publisher, year, edition, pages
2015. Vol. 75, p. 2261-2267
Keywords [en]
Thermal-physical property; Sensitivity study; Pipeline transport; CCS
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:mdh:diva-29333DOI: 10.1016/j.egypro.2015.07.411ISI: 000361030003082Scopus ID: 2-s2.0-84947104769OAI: oai:DiVA.org:mdh-29333DiVA, id: diva2:861053
Conference
7th International Conference on Applied Energy (ICAE), MAR 28-31, 2015, Abu Dhabi, U ARAB EMIRATES
Available from: 2015-10-15 Created: 2015-10-15 Last updated: 2023-08-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Nookuea, WorradaLi, HailongThorin, EvaYan, Jinyue

Search in DiVA

By author/editor
Nookuea, WorradaLi, HailongThorin, EvaYan, Jinyue
By organisation
Future Energy Center
In the same journal
Energy Procedia
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 148 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf