mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Handling product variety in a mixed-product assembly line: A case study
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0002-3560-9372
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0003-4308-2678
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0003-3187-7932
2015 (English)In: DS 80-4 PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN (ICED 15) VOL 4: DESIGN FOR X, DESIGN TO X, 2015, Vol. 4, 41-50 p.Conference paper, Abstract (Refereed)
Abstract [en]

In today’s fast-changing global market, using mixed-product assembly lines (MPALs) and mixed-model assembly lines (MMALs) allows manufacturing companies to be flexible and to maintain their competitive edge through product variety. Balancing and sequencing issues have been recognized as the main challenges of MPALs and MMALs, but other practical needs of MPALs remain unclear. Recognizing the practical needs of MPALs helps in identifying related requirements for product design, leading to products that closely align with the MPAL concept. The objective of this paper is to offer an industrial perspective on the needs of MPALs and to identify its requirements vis-à-vis product design. To achieve this objective, a single real-time case study in a heavy-vehicle-manufacturing company has been performed. The results from this industrial case study suggest that in order to handle product variety in MPALs and to reduce the related complexity, certain dimensions of flexibility need to be created in the assembly system, and requirements related to product design should be considered simultaneously in order to support assembly processes.

Place, publisher, year, edition, pages
2015. Vol. 4, 41-50 p.
Keyword [en]
Mixed-product assembly line; Flexibility; Requirements; Product design; Complexity
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:mdh:diva-27849ISI: 000366982900005Scopus ID: 2-s2.0-84979662973ISBN: 978-1-904670-67-4 (print)OAI: oai:DiVA.org:mdh-27849DiVA: diva2:806077
Conference
20th International Conference on Engineering Design, ICED 2015; Bovisa Campus of Politecnico di MilanoMilan; Italy; 27 July 2015 through 30 July 2015
Available from: 2015-04-17 Created: 2015-04-17 Last updated: 2016-08-18Bibliographically approved
In thesis
1. Supporting flexibility in an assembly system through product design
Open this publication in new window or tab >>Supporting flexibility in an assembly system through product design
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Increasing customer demands for product variety in conjunction with the short lifecycle of products has caused manufacturing companies to introduce a wide range of products by accommodating flexibility. An assembly system is an essential part of the manufacturing system from both cost and time perspectives. Hence, the shift towards flexibility in manufacturing companies highlights the significance of establishing flexible assembly systems and designing products that are closely aligned with them. Despite its significance, however, the flexible assembly system concept and its requirements for product design have not been clearly defined in research and from a practical point of view. Most research on flexible assembly systems has mainly approached either the design or the balancing and scheduling issues of these systems, whereas only a few studies have briefly defined the flexible assembly system they focused on, without further specifying the characteristics of a flexible assembly system and its requirements for product design.

Taking that into account, the objective of this work is to provide a framework to contribute to the understanding of the concept of flexibility in an assembly system and its requirements for product design. In order to fulfil the objective, four empirical studies combined with literature reviews have been conducted. The empirical studies, a multiple case study and three single case studies, investigate the definition of flexibility in an assembly system as well as the requirements that a flexible assembly system imposes on product design.

Through its findings, this research provides a definition of flexibility in assembly systems that mainly revolves around volume, mix and new product flexibility. In addition, six constituents of a flexible assembly system have been identified: adaptable material supply, versatile workforce, increased commonality, standardised work content, integrated product properties and strategic planning. Furthermore, three requirements of a flexible assembly system for product design are defined, which, if fulfilled, reduce the complexity created by product variety and consequently support flexibility in the assembly system. Accordingly, to increase the understanding of the concept of flexibility in an assembly system and its requirements for product design, a four-staged framework is suggested. The proposed framework deals with the activities related to the concept and the development of a flexible assembly system and is expected to be received by assembly practitioners as a link between assembly and product design teams in the product realisation process. Future research can further validate the framework in practice.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2015
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 206
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Innovation and Design
Identifiers
urn:nbn:se:mdh:diva-27853 (URN)978-91-7485-207-3 (ISBN)
Presentation
2015-06-12, Filen, Mälardalens högskola, Eskilstuna, 10:00 (English)
Opponent
Supervisors
Available from: 2015-04-23 Created: 2015-04-17 Last updated: 2015-06-01Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Asadi, NargesJackson, MatsFundin, Anders
By organisation
Innovation and Product Realisation
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

Total: 142 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf