mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Support for Legacy Real-Time Applications in an HSF-Enabled FreeRTOS - a technical report
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Model-Based Engineering of Embedded Systems (MBEES))ORCID iD: 0000-0001-7448-3381
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-1687-930X
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-7586-0409
2014 (English)Report (Refereed)
Abstract [en]

This paper presents a runtime support to consolidate legacy together with other real-time applications, running a single instance of a real-time operating system (RTOS), and sharing system resources. In this context, we resort to the hierarchical scheduling framework (HSF) to provide tem- poral partitions for dierent applications, supporting their independent development and real-time analysis, thus resulting on a predictable inte- gration. In particular, the paper focuses on a constructive element, the legacy server that allows executing code that is unaware of the temporal partition within which it is deployed. Furthermore, we discuss the chal- lenges that need to be addressed to execute a legacy application in an HSF without modications to the original code. We focus on the chal- lenge of enabling sharing system resources, both hardware and software, as typically found in most industrial software systems. We propose a novel solution based on wrappers for the required RTOS system calls. We implement our ideas in a concrete implementation on FreeRTOS OS, taking advantage of a prior HSF implementation. The validation is performed by a proof-of-concept case study that shows a successful integration of a legacy application that uses shared resources in a system that executes other applications. 

Place, publisher, year, edition, pages
Sweden: Mälardalen University , 2014.
Keyword [en]
real-time systems, hierarchical scheduling, legacy application reuse, applications integration
National Category
Embedded Systems Computer Systems
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:mdh:diva-26547ISRN: MDH-MRTC-295/2014-1-SEOAI: oai:DiVA.org:mdh-26547DiVA: diva2:762813
Available from: 2014-11-13 Created: 2014-11-13 Last updated: 2015-02-18Bibliographically approved
In thesis
1. Hierarchical scheduling for predictable execution of real-time software components and legacy systems
Open this publication in new window or tab >>Hierarchical scheduling for predictable execution of real-time software components and legacy systems
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This dissertation presents techniques to achieve predictable execution of coarse-grained software components and for preservation of temporal properties of components during their integration and reuse.

The dissertation presents a novel concept runnable virtual node (RVN) which interaction with the environment is bounded both by a functional and a temporal interface, and the validity of its internal temporal behaviour is preserved when integrated with other components or when reused in a new environment. The realization of RVN exploits techniques for hierarchical scheduling to achieve temporal isolation, and the principles from component-based software-engineering to achieve functional isolation. The proof-of-concept case studies executed on a micro-controller demonstrate the preserving of real-time properties within software components for predictable integration and reusability in a new environment, in both hierarchical scheduling and RVN contexts.

Further, a multi-resource server (MRS) is proposed and implemented to enable predictable execution when composing multiple real-time components on a COTS multicore platform. MRS uses resource reservation for both CPU-bandwidth and memory-bus bandwidth to bound the interferences between tasks running on the same core, as well as, between tasks running on different cores. The later could, without MRS, interfere with each other due to contention on a shared memory-bus and memory. The results indicated that MRS can be used to "encapsulate" legacy systems and to give them enough resources to fulfill their purpose. In the dissertation, the compositional schedulability analysis for MRS is also provided and an experimental study is performed to bring insight on the correlation between the server budgets.

We believe that the proposed approaches enable a faster software integration and support legacy reuse and that this work transcend the boundaries of software engineering and real-time systems.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2014
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 169
Keyword
real-time systems, component integration and reuse, hierarchical scheduling, multicore
National Category
Embedded Systems Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-26548 (URN)978-91-7485-179-3 (ISBN)
Public defence
2014-12-17, R3-151, Mälardalens högskola, Västerås, 10:00 (English)
Opponent
Supervisors
Projects
PPMSchedPROGRESS
Available from: 2014-11-13 Created: 2014-11-13 Last updated: 2014-12-03Bibliographically approved

Open Access in DiVA

No full text

Other links

http://www.es.mdh.se/publications/3768-

Search in DiVA

By author/editor
Inam, RafiaBehnam, MorisSjödin, Mikael
By organisation
Embedded Systems
Embedded SystemsComputer Systems

Search outside of DiVA

GoogleGoogle Scholar

Total: 133 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf