mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Approach to Maintaining Safety Case Evidence After A System Change
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-9347-1949
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-6352-4368
University of York, UK.ORCID iD: 0000-0003-2415-8219
2014 (English)In: 2014 Tenth European Dependable Computing Conference EDCC 2014, 2014Conference paper, Published paper (Refereed)
Abstract [en]

Developers of some safety critical systems construct a safety case. Developers changing a system during development or after release must analyse the change's impact on the safety case. Evidence might be invalidated by changes to the system design, operation, or environmental context. Assumptions valid in one context might be invalid elsewhere. The impact of change might not be obvious. This paper proposes a method to facilitate safety case maintenance by highlighting the impact of changes.

Place, publisher, year, edition, pages
2014.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-26425ISRN: 9781479938056OAI: oai:DiVA.org:mdh-26425DiVA: diva2:760002
Conference
2014 Tenth European Dependable Computing Conference EDCC 2014, 13-16 May 2014, Newcastle, United Kingdom
Available from: 2014-11-02 Created: 2014-10-31 Last updated: 2015-10-07Bibliographically approved
In thesis
1. Enhancing the Maintainability of Safety Cases Using Safety Contracts
Open this publication in new window or tab >>Enhancing the Maintainability of Safety Cases Using Safety Contracts
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Safety critical systems are those systems whose failure could result in loss of life, significant property damage, or damage to the environment. These systems require high quality and dependability levels in them, where system safety is a major property that should be adequately assured to avoid any severe outcomes. Many safety critical systems in different domains (e.g., avionics, railway, automotive, etc.) are subject to a certification. The certification process is based on an evaluation of whether the associated hazards to a system are mitigated to an acceptable level. Safety cases are often required to demonstrate how a regulatory body can reasonably conclude that a system is acceptably safe from the evidence available. The development of safety cases has become common practice in many safety critical system domains. However, safety cases are costly since they need significant amount of time and efforts to produce. This cost can be dramatically increased (even for already certified systems) due to system changes as they require maintaining the safety case before it can be submitted for certification. Anticipating potential changes is useful since it reveals traceable consequences that will eventually reduce the maintenance efforts. However, considering a complete list of anticipated changes is difficult. What can be easier though is to determine the flexibility of system components to changes.

Sensitivity analysis has been proposed as a useful tool to measure the flexibility of the different system properties to changes. Furthermore, the concept of contracts have been proposed as a means for facilitating the change management process due to their ability to record the dependencies among system's components. In this thesis, we use sensitivity analysis to support changes prediction and prioritisation. We also use safety contracts to record the information of changes that will ultimately advise the engineers what to consider and check when changes actually happen.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2015
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 220
National Category
Software Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-29133 (URN)978-91-7485-238-7 (ISBN)
Presentation
2015-11-13, Mälardalens högskola, Delta, Västerås, 13:15 (English)
Opponent
Supervisors
Available from: 2015-10-07 Created: 2015-09-25 Last updated: 2015-11-09Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Jaradat, OmarGraydon, PatrickBate, Iain
By organisation
Embedded Systems
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf