https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integration of biofuel production into district heating - Part II: An evaluation of the district heating production costs using Stockholm as a case study
Linköping University.
Mälardalen University, School of Business, Society and Engineering. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-9230-1596
Linköping University.
Blekinge Institute of Technology.
2014 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 69, p. 188-198Article in journal (Refereed) Published
Abstract [en]

Biofuel production through polygeneration with heat as one of the by-products implies a possibility for cooperation between transport and district heating sectors by introducing large-scale biofuel production into district heating systems. The cooperation may have effects on both the biofuel production costs and the district heating production costs. This paper is the second part of the study that investigates those effects. The biofuel production costs evaluation, considering heat and electricity as by-products, was performed in the first part of the study. In this second part of the study, an evaluation of how such cooperation would influence the district heating production costs using Stockholm's district heating system as a case study was performed. The plants introduced in the district heating system were chosen depending on the future development of the transport sector. In order to perform sensitivity analyses of different energy market conditions, two energy market scenarios were applied. Despite the higher revenues from the sale of by-products, due to the capital intense investments required, the introduction of large-scale biofuel production into the district heating system does not guarantee economic benefits. Profitability is highly dependent on the types of biofuel production plants and energy market scenarios. The results show that large-scale biogas and ethanol production may lead to a significant reduction in the district heating production costs in both energy market scenarios, especially if support for transportation fuel produced from renewable energy sources is included. If the total biomass capacity of the biofuel production plants introduced into the district heating system is 900 MW, the district heating production costs would be negative and the whole public transport sector and more than 50% of the private cars in the region could be run on the ethanol and biogas produced. The profitability is shown to be lower if the raw biogas that is by-produced in the biofuel production plants is used for combined and power production instead of being sold as transportation fuel; however, this strategy may still result in profitability if the support for transportation fuel produced from renewable energy sources is included. Investments in Fischer-Tropsch diesel and dimethyl ether production are competitive to the investments in combined and power production only if high support for transportation fuel produced from renewable energy sources is included. 

Place, publisher, year, edition, pages
2014. Vol. 69, p. 188-198
Keywords [en]
Biofuel, District heating, Energy cooperation, Transport sector
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mdh:diva-24865DOI: 10.1016/j.jclepro.2014.01.042ISI: 000335102900021Scopus ID: 2-s2.0-84897464107OAI: oai:DiVA.org:mdh-24865DiVA, id: diva2:712732
Available from: 2014-04-16 Created: 2014-04-16 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Dotzauer, Erik

Search in DiVA

By author/editor
Dotzauer, Erik
By organisation
School of Business, Society and EngineeringFuture Energy Center
In the same journal
Journal of Cleaner Production
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 147 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf