mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Decomposing tensor products for cyclic and dihedral groups
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. (Mathematics/Applied Mathematics)ORCID iD: 0000-0001-9177-9774
Mathematical Institute, St Giles, Oxford, United Kingdom.
2013 (English)In: Proceedings of the 45th Symposium on Ring Theory and Representation Theory, 2013, 24-28 p.Conference paper, Published paper (Refereed)
Abstract [en]

We give a new formula for the decomposition of a tensor product of indecomposable modules of cyclic two-groups. This formula is also shown to describe thedecomposition of tensor products of an important class of modules of dihedral two-groups

Place, publisher, year, edition, pages
2013. 24-28 p.
National Category
Algebra and Logic
Research subject
Mathematics/Applied Mathematics
Identifiers
URN: urn:nbn:se:mdh:diva-21716OAI: oai:DiVA.org:mdh-21716DiVA: diva2:652519
Conference
Proceedings of the 45th Symposium on Ring Theory and Representation Theory, September 7-9, 2012, Shinshu University, Japan
Available from: 2013-09-30 Created: 2013-09-30 Last updated: 2016-03-10

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Darpö, Erik
By organisation
Educational Sciences and Mathematics
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar

Total: 221 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf