mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Applying the Peak Over Thresholds Method on Worst-Case Response Time Analysis of Complex Real-Time Systems
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (IS (Embedded Systems))ORCID iD: 0000-0001-9736-8490
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (IS (Embedded Systems))ORCID iD: 0000-0002-1687-930X
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (IS (Embedded Systems))ORCID iD: 0000-0001-6132-7945
2013 (English)In: 2013 IEEE 19th International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2013, 2013, 22-31 p.Conference paper, Published paper (Refereed)
Abstract [en]

The predictability of timing behavior is a very important performance issue of a real-time system. As the complexity of modern industrial systems increases, analyzing the timing behaviors of those systems becomes more and more challenging. Most of the existing analysis methods depend on static and detailed information of the systems under analysis. However, sometimes only partial information of a system can be available, or it may require too much effort on obtaining those details, making those analysis methods much less feasible. Moreover, those methods usually focus on some specific system models with unrealistic assumptions, consequently, applying those methods on a complex industrial real-time system may result in overly pessimistic results. Therefore, in this paper, we propose a statistical method to compute Worst-Case Response Times (WCRTs) of complex real-time systems regarding soft timing constraints, which can provide a higher general applicability with less required system information. Our approach employs a Peak Over Thresholds (POT) method, which is a branch of the Extreme Value Theory (EVT). For the evaluation, we have applied this approach on the analysis of message transmission latencies over Controller Area Networks (CAN).

Place, publisher, year, edition, pages
2013. 22-31 p.
National Category
Engineering and Technology Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-21392DOI: 10.1109/RTCSA.2013.6732200Scopus ID: 2-s2.0-84899413647ISBN: 978-1-4799-0850-9 (print)OAI: oai:DiVA.org:mdh-21392DiVA: diva2:648631
Conference
RTSCA 2013, The 19th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, August 19-21, 2013, Taipei, Taiwan
Projects
START - Stochastic Real-Time Analysis of Embedded Software Systems
Available from: 2013-09-16 Created: 2013-09-11 Last updated: 2015-01-09Bibliographically approved
In thesis
1. On Improving Resource Utilization in Distributed Real-Time Embedded Systems
Open this publication in new window or tab >>On Improving Resource Utilization in Distributed Real-Time Embedded Systems
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

In our modern life, embedded systems are playing an essential role. An embedded system is a computer system embedded into a certain device, in order to achieve computing functions. Beyond all doubt, as a validated system, the functional correctness must be guaranteed. However, for many embedded systems, timeliness also plays an important role in addition to the correctness of the functionalities. For example, in an automotive braking system, the braking function needs to be processed within a limited time duration in order to avoid accidents. Such systems are known as real-time embedded systems.

In these systems, there can be plenty of software programs (called tasks) sharing limited computing resources (e.g. processors, memories). If the system executes tasks in a random way, the whole system will become unpredictable. As a result, the system designers will not be able to verify if the system design can fulfill all the timing requirements or not. In other words, the system is not guaranteed to be safe. Therefore, system designers need to carefully implement algorithms to schedule all the tasks in a predictable manner. Regarding each scheduling algorithm, schedulability analyses are proposed which are used to check if the requirements can be satisfied.

Unfortunately, many real-time systems reserve too much computing resource for the sake of fulfilling timing requirements, without taking into account resource utilization. As a result, system resources cannot be efficiently utilized, which can cause significant resource waste in reality. Therefore, in this thesis, we aim to improve resource utilization in modern distributed real-time embedded systems. We try to tackle this problem from the following two aspects.

  1. Investigating tighter timing analyses. Due to the difficulty in performing precise mathematical schedulability analyses, most of the existing analyses include varying degrees of pessimism. In other words, the actual performance of the system can be much better than the predictions. If we can reduce the pessimism in schedulability analyses, we can then admit more workload into the system.
  2. Proposing new scheduling frameworks. It is difficult to find a scheduling algorithm which is suitable for all the situations. Therefore, we need different mechanisms to handle specific system characteristics in order to improve the resource utilization. 
Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2014
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 190
National Category
Embedded Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-26519 (URN)978-91-7485-177-9 (ISBN)
Presentation
2014-12-18, Delta, Västerås, 13:30 (English)
Opponent
Supervisors
Projects
START
Available from: 2014-11-12 Created: 2014-11-11 Last updated: 2014-12-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Liu, MengBehnam, MorisNolte, Thomas
By organisation
Embedded Systems
Engineering and TechnologyElectrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf