mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An automated round-trip support towards deployment assessment in component-based embedded systems
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-0401-1036
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-1512-0844
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-0416-1787
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-7586-0409
2013 (English)In: CBSE 2013 - Proceedings of the 16th ACM SIGSOFT Symposium on Component Based Software Engineering, 2013, 2013, 179-188 p.Conference paper, Published paper (Refereed)
Abstract [en]

Synergies between model-driven and component-based software engineering have been indicated as promising to mitigate complexity in development of embedded systems. In this work we evaluate the usefulness of a model-driven round-trip approach to aid deployment optimization in the development of embedded component-based systems. The round-trip approach is composed of the following steps: modelling the system, generation of full code from the models, execution and monitoring the code execution, and finally back-propagation of monitored values to the models. We illustrate the usefulness of the round-trip approach exploiting an industrial case-study from the telecom-domain. We use a code-generator that can realise different deployment strategies, as well as special monitoring code injected into the generated code, and monitoring primitives defined at operating system level. Given this infrastructure we can evaluate extra-functional properties of the system and thus compare different deployment strategies. 

Place, publisher, year, edition, pages
2013. 179-188 p.
Keyword [en]
Back propagation, Component-based software engineering, Deployment, Embedded systems, Model-driven engineering
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mdh:diva-20818DOI: 10.1145/2465449.2465450Scopus ID: 2-s2.0-84880533266ISBN: 9781450321228 (print)OAI: oai:DiVA.org:mdh-20818DiVA: diva2:638813
Conference
16th ACM SIGSOFT Symposium on Component Based Software Engineering, CBSE 2013, 17 June 2013 through 21 June 2013, Vancouver, BC
Projects
CHESSITS-EASY Post Graduate School for Embedded Software and SystemsRALF3 - Software for Embedded High Performance Architectures
Note

Sponsors: ACM SIGSOFT

Available from: 2013-08-02 Created: 2013-08-02 Last updated: 2015-11-04Bibliographically approved
In thesis
1. Preservation of Extra-Functional Properties in Embedded Systems Development
Open this publication in new window or tab >>Preservation of Extra-Functional Properties in Embedded Systems Development
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The interaction of embedded systems with their environments and their resource limitations make it important to take into account properties such as timing, security, and resource consumption in designing such systems. These so-called Extra-Functional Properties (EFPs) capture and describe the quality and characteristics of a system, and they need to be taken into account from early phases of development and throughout the system's lifecycle. An important challenge in this context is to ensure that the EFPs that are defined at early design phases are actually preserved throughout detailed design phases as well as during the execution of the system on its platform. In this thesis, we provide solutions to help with the preservation of EFPs; targeting both system design phases and system execution on the platform. Starting from requirements, which form the constraints of EFPs, we propose an approach for modeling Non-Functional Requirements (NFRs) and evaluating different design alternatives with respect to the satisfaction of the NFRs. Considering the relationship and trade-off among EFPs, an approach for balancing timing versus security properties is introduced. Our approach enables balancing in two ways: in a static way resulting in a fixed set of components in the design model that are analyzed and thus verified to be balanced with respect to the timing and security properties, and also in a dynamic way during the execution of the system through runtime adaptation. Considering the role of the platform in preservation of EFPs and mitigating possible violations of them, an approach is suggested to enrich the platform with necessary mechanisms to enable monitoring and enforcement of timing properties. In the thesis, we also identify and demonstrate the issues related to accuracy in monitoring EFPs, how accuracy can affect the decisions that are made based on the collected information, and propose a technique to tackle this problem. As another contribution, we also show how runtime monitoring information collected about EFPs can be used to fine-tune design models until a desired set of EFPs are achieved. We have also developed a testing framework which enables automatic generation of test cases in order verify the actual behavior of a system against its desired behavior. On a high level, the contributions of the thesis are thus twofold: proposing methods and techniques to 1) improve maintenance of EFPs within their correct range of values during system design, 2) identify and mitigate possible violations of EFPs at runtime.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2015
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 171
Keyword
Software Engineering, Embedded Systems, Non-Functional Requirements, Extra-Functional Properties, Model-Driven Development, Trade-off analysis
National Category
Computer Systems Embedded Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-27300 (URN)978-91-7485-182-3 (ISBN)
Public defence
2015-02-24, Gamma, Mälardalens högskola, Västerås, 13:15 (English)
Opponent
Supervisors
Projects
CHESSMBATITS-EASY
Available from: 2015-01-12 Created: 2015-01-12 Last updated: 2015-02-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ciccozzi, FedericoSaadatmand, MehrdadCicchetti, AntonioSjödin, Mikael
By organisation
Embedded Systems
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf