mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Monitoring Capabilities of Schedulers in Model-Driven Development of Real-Time Systems
Mälardalen University, School of Innovation, Design and Engineering. (IS)ORCID iD: 0000-0002-1512-0844
Mälardalen University, School of Innovation, Design and Engineering. (IS)ORCID iD: 0000-0001-7586-0409
Royal Institute of Technology, KTH.
2012 (English)In: IEEE Symposium on Emerging Technologies and Factory Automation, ETFA 2012, 2012, Article number: 6489589- p.Conference paper, Published paper (Refereed)
Abstract [en]

Model-driven development has the potential to reduce the design complexity of real-time embedded systems by increasing the abstraction level, enabling analysis at earlier phases of development, and automatic generation of code from the models. In this context, capabilities of schedulers as part of the underlying platform play an important role. They can affect the complexity of code generators and how the model is implemented on the platform. Also, the way a scheduler monitors the timing behaviors of tasks and schedules them can facilitate the extraction of runtime information. This information can then be used as feedback to the original model in order to identify parts of the model that may need to be re-designed and modified. This is especially important in order to achieve round-trip support for model-driven development of real-time systems. In this paper, we describe our work in providing such monitoring features by introducing a second layer scheduler on top of the OSE real-time operating system's scheduler. The goal is to extend the monitoring capabilities of the scheduler without modifying the kernel. The approach can also contribute to the predictability of applications by bringing more awareness to the scheduler about the type of real-time tasks (i.e., periodic, sporadic, and aperiodic) that are to be scheduled and the information that should be monitored and logged for each type.

Place, publisher, year, edition, pages
2012. Article number: 6489589- p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:mdh:diva-17297DOI: 10.1109/ETFA.2012.6489589Scopus ID: 2-s2.0-84876359904ISBN: 978-146734737-2 (print)OAI: oai:DiVA.org:mdh-17297DiVA: diva2:579628
Conference
17th IEEE International Conference on Emerging Technologies & Factory Automation (ETFA 2012),September 17-20, 2012, Krakow, Poland
Available from: 2012-12-20 Created: 2012-12-20 Last updated: 2015-02-04Bibliographically approved
In thesis
1. Preservation of Extra-Functional Properties in Embedded Systems Development
Open this publication in new window or tab >>Preservation of Extra-Functional Properties in Embedded Systems Development
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The interaction of embedded systems with their environments and their resource limitations make it important to take into account properties such as timing, security, and resource consumption in designing such systems. These so-called Extra-Functional Properties (EFPs) capture and describe the quality and characteristics of a system, and they need to be taken into account from early phases of development and throughout the system's lifecycle. An important challenge in this context is to ensure that the EFPs that are defined at early design phases are actually preserved throughout detailed design phases as well as during the execution of the system on its platform. In this thesis, we provide solutions to help with the preservation of EFPs; targeting both system design phases and system execution on the platform. Starting from requirements, which form the constraints of EFPs, we propose an approach for modeling Non-Functional Requirements (NFRs) and evaluating different design alternatives with respect to the satisfaction of the NFRs. Considering the relationship and trade-off among EFPs, an approach for balancing timing versus security properties is introduced. Our approach enables balancing in two ways: in a static way resulting in a fixed set of components in the design model that are analyzed and thus verified to be balanced with respect to the timing and security properties, and also in a dynamic way during the execution of the system through runtime adaptation. Considering the role of the platform in preservation of EFPs and mitigating possible violations of them, an approach is suggested to enrich the platform with necessary mechanisms to enable monitoring and enforcement of timing properties. In the thesis, we also identify and demonstrate the issues related to accuracy in monitoring EFPs, how accuracy can affect the decisions that are made based on the collected information, and propose a technique to tackle this problem. As another contribution, we also show how runtime monitoring information collected about EFPs can be used to fine-tune design models until a desired set of EFPs are achieved. We have also developed a testing framework which enables automatic generation of test cases in order verify the actual behavior of a system against its desired behavior. On a high level, the contributions of the thesis are thus twofold: proposing methods and techniques to 1) improve maintenance of EFPs within their correct range of values during system design, 2) identify and mitigate possible violations of EFPs at runtime.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2015
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 171
Keyword
Software Engineering, Embedded Systems, Non-Functional Requirements, Extra-Functional Properties, Model-Driven Development, Trade-off analysis
National Category
Computer Systems Embedded Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-27300 (URN)978-91-7485-182-3 (ISBN)
Public defence
2015-02-24, Gamma, Mälardalens högskola, Västerås, 13:15 (English)
Opponent
Supervisors
Projects
CHESSMBATITS-EASY
Available from: 2015-01-12 Created: 2015-01-12 Last updated: 2015-02-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Saadatmand, MehrdadSjödin, Mikael
By organisation
School of Innovation, Design and Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf