Open this publication in new window or tab >>2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
Design of real-time embedded systems is a complex and challenging task. Part of this complexity originates from their limited resources which incurs handling a big range of Non-Functional Requirements (NFRs). Therefore, satisfaction of NFRs plays an important role in the correctness of the design of these systems. Model-driven development has the potential to reduce the design complexity of real-time embedded systems by increasing the abstraction level, enabling analysis at earlier phases of development and code generation. In this thesis, we identify some of the challenges that exist in model-driven development of real-time embedded systems with respect to NFRs, and provide techniques and solutions that aim to help with the satisfaction of NFRs. Our end goal is to ensure that the set of NFRs defined for a system is not violated at runtime.
First, we identify and highlight the challenges of modeling NFRs in telecommunication systems and discuss the application of a UML-based approach for modeling them. Since NFRs have dependencies, and the design decisions to satisfy them cannot be considered in isolation, we propose a model-based approach for trade-off analysis of NFRs to help with the comparison of different design models with respect to the satisfaction level of their NFRs. Following the issue of evaluating the interdependencies of NFRs, we also propose solutions for establishing and maintaining balance between different NFRs. In this regard, we categorize our suggested solutions into static and dynamic. The former refers to a static design and set of features which ensures and guarantees the balance of NFRs, while the latter means establishing balance at runtime by reconfiguring the system and runtime adaptation. Finally, we discuss the role of the execution platform in preservation and monitoring of timing properties in real-time embedded systems and propose an approach to enrich the platform with necessary mechanisms for monitoring them.
Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2012
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 150
Keywords
non-functional requirements, model-driven development, real-time, embedded systems
National Category
Embedded Systems Software Engineering Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-14533 (URN)978-91-7485-066-6 (ISBN)
Presentation
2012-05-11, Kappa, Mälardalen University, Västerås, 13:15 (English)
Opponent
Supervisors
Projects
CHESS
2012-04-262012-04-252018-01-12Bibliographically approved