In wireless communication there is commonly much unnecessarycommunication made in directions not pointing towards the recipient. Normallyomni directional antennas are being used which sends the same amount ofenergy in all directions equally. This waste of energy reduces the lifetime ofbattery powered units and causes more traffic collisions than necessary. Oneway of minimizing this wasted energy and traffic collisions, is to use anothertype of antenna called “smart antenna”. These antennas can use selectableradiation patterns depending on the situation and thus drastically minimize theunnecessary energy waste. Smart antennas also provide the ability to sense thedirection of incoming signals which is favorable for physical layout mappingsuch as orientation.This thesis presents the prototyping of a new type of smart antenna called theSPIDA smart antenna. This antenna is a cheap to produce smart antennadesigned for the 2.4 GHz frequency band. The SPIDA smart antenna can usesixty-four different signal patterns with the control of six separate directionalmodes, amongst these patterns are six single direction patterns, an omnidirectionalsignal pattern and fifty-six combi-direction patterns. The thesispresents complete building instructions, evaluation data and functional driversfor the SPIDA smart antenna.