In wireless communication there is commonly much unnecessary communication made in directions not pointing towards the recipient. Normally omni directional antennas are being used which sends the same amount of energy in all directions equally. This waste of energy reduces the lifetime of battery powered units and causes more traffic collisions than necessary. One way of minimizing this wasted energy and traffic collisions, is to use another type of antenna called “smart antenna”. These antennas can use selectable radiation patterns depending on the situation and thus drastically minimize the unnecessary energy waste. Smart antennas also provide the ability to sense the direction of incoming signals which is favorable for physical layout mapping such as orientation.
This thesis presents the prototyping of a new type of smart antenna called the SPIDA smart antenna. This antenna is a cheap to produce smart antenna designed for the 2.4 GHz frequency band. The SPIDA smart antenna can use sixty-four different signal patterns with the control of six separate directional modes, amongst these patterns are six single direction patterns, an omni-directional signal pattern and fifty-six combi-direction patterns. The thesis presents complete building instructions, evaluation data and functional drivers for the SPIDA smart antenna.