mdh.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt161",{id:"formSmash:upper:j_idt161",widgetVar:"widget_formSmash_upper_j_idt161",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt162_j_idt164",{id:"formSmash:upper:j_idt162:j_idt164",widgetVar:"widget_formSmash_upper_j_idt162_j_idt164",target:"formSmash:upper:j_idt162:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Nonlinearly Perturbed Renewal Equation with Perturbations of a Non-polynomial TypePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2010 (English)In: Proceedings of the International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management, Beer Sheva, 2010. / [ed] Frenkel, I., Gertsbakh, I., Khvatskin L., Laslo Z. Lisnianski, A., Beer Sheva: SCE - Shamoon College of Engineering , 2010, p. 754-763Conference paper, Published paper (Refereed)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Beer Sheva: SCE - Shamoon College of Engineering , 2010. p. 754-763
##### Keywords [en]

Renewal equation, nonlinear perturbation, non-polynomial perturbation, exponential asymptotic expansion, risk process, ruin probability
##### National Category

Mathematics Computational Mathematics
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-9347OAI: oai:DiVA.org:mdh-9347DiVA, id: diva2:301946
##### Conference

The International Symposium on Stochastic Models in Reliability Engineering, Life Sciences and Operations Management. February 8-11, 2010. Beer Sheva, Israel.
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt463",{id:"formSmash:j_idt463",widgetVar:"widget_formSmash_j_idt463",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt469",{id:"formSmash:j_idt469",widgetVar:"widget_formSmash_j_idt469",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt475",{id:"formSmash:j_idt475",widgetVar:"widget_formSmash_j_idt475",multiple:true}); Available from: 2010-03-03 Created: 2010-03-03 Last updated: 2015-08-06Bibliographically approved
##### In thesis

The object of study is a model of nonlinearly perturbed continuous-time renewal equation with multivariate non-polynomial perturbations. The characteristics of the distribution generating the renewal equation are assumed to have expansions in the perturbation parameter with respect to a non-polynomial asymptotic scale which can be considered as a generalization of the standard polynomial scale. Exponential asymptotics for such a model are obtained and applications are given.

1. Perturbed Renewal Equations with Non-Polynomial Perturbations$(function(){PrimeFaces.cw("OverlayPanel","overlay302104",{id:"formSmash:j_idt751:0:j_idt755",widgetVar:"overlay302104",target:"formSmash:j_idt751:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Nonlinearly Perturbed Renewal Equations: asymptotic Results and Applications$(function(){PrimeFaces.cw("OverlayPanel","overlay438488",{id:"formSmash:j_idt751:1:j_idt755",widgetVar:"overlay438488",target:"formSmash:j_idt751:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1193",{id:"formSmash:j_idt1193",widgetVar:"widget_formSmash_j_idt1193",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1248",{id:"formSmash:lower:j_idt1248",widgetVar:"widget_formSmash_lower_j_idt1248",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1249_j_idt1251",{id:"formSmash:lower:j_idt1249:j_idt1251",widgetVar:"widget_formSmash_lower_j_idt1249_j_idt1251",target:"formSmash:lower:j_idt1249:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});