A Worst-Case Execution Time (WCET) analysis finds upper bounds for the execution time of programs. Reliable WCET estimates are essential in the development of safety-critical embedded systems, where failures to meet timing deadlines can have catastrophic consequences. Traditionally, WCET analysis is applied only in the late stages of embedded system software development. This is problematic, since WCET estimates are often needed already in early stages of system development, for example as inputs to various kinds of high-level embedded system engineering tools such as modelling and component frameworks, scheduling analyses, timed automata, etc. Early WCET estimates are also useful for selecting a suitable processor configuration (CPU, memory, peripherals, etc.) for the embedded system. If early WCET estimates are missing, many of these early design decisions have to be made using experience and ``gut feeling''. If the final executable violates the timing bounds assumed in earlier system development stages, it may result in costly system re-design. This paper presents a novel method to derive approximate WCET estimates at early stages of the software development process. The method is currently being implemented and evaluated. The method should be applicable to a large variety of software engineering tools and hardware platforms used in embedded system development, leading to shorter development times and more reliable embedded software.
7th IFIP WG 10.2 International Workshop, SEUS 2009 Newport Beach, CA, USA, November 16-18