Cyclic debugging is the process of iteratively re-executing a failed execution in order to determine the cause of the failure, i.e., the bug. In this process, being able to correctly reproduce the faulty execution is an absolute necessity. In sequential, deterministic, non-real-time software, this reproducibility is inherent. However, when the execution is preempted by interrupts, this has severe effects on program reproducibility, since, during the reproduction, it is required for interrupts to occur at the exact same instructions. Previously, this problem has been solved using instruction counters, that induce large execution time perturbations, or by special hardware solutions which impose a risk of inexact results. In this paper, we propose an alternative method for pinpointing interrupts using hashed values of selected parts of the program execution context. Although our method in some cases can be ambiguous, we show that it serves as a pragmatic method for pinpointing and reproducing interrupts in embedded real-time systems. Moreover, our method does not rely on special hardware or compilers, is simple to implement and use, and requires little execution time and memory.