mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A new mobilized energy storage system for industrial waste heat recovery for distributed heat supply
Mälardalen University, School of Sustainable Development of Society and Technology. (PRO)
Mälardalen University, School of Sustainable Development of Society and Technology. Royal Institute of Technology, Stockholm, Sweden. (PRO)ORCID iD: 0000-0003-0300-0762
Eskilstuna Energi och Miljö AB.
2009 (English)Conference paper, Published paper (Refereed)
Abstract [en]

This paper introduces a new mobilized thermal energy storage (M-TES) for the recovery ofindustrial waste heat for distributed heat supply to the distributed users which have not beenconnected to the district heating network. In the M-TES system, phase-change materials (PCM)are used as the energy storage and carrier to transport the waste heat from the industrial site to theend users by a lorry. A technical feasibility and economic viability of M-TES has been conductedwith the comparison of the district heating system as a reference. Thermal performance and costimpacts by different PCM materials have been analyzed compared, aiming at determining theoptimum operation conditions. A case study is investigated by utilizing the waste heat from acombine heat and power (CHP) plant for the distributed users which are located at over 30kilometers away from the plant. The results show that the M-TES may offer a competitivesolution compared to building or extending the existing district heating network.

Place, publisher, year, edition, pages
2009.
Keywords [en]
Mobile energy storage system; Energy storage materials; Industrial waste heat;
National Category
Other Engineering and Technologies
Research subject
Energy- and Environmental Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-7600OAI: oai:DiVA.org:mdh-7600DiVA, id: diva2:278735
Conference
The First International Conference on Applied Energy (ICAE’09), Hong Kong, January 5-7, 2009
Available from: 2009-11-29 Created: 2009-11-29 Last updated: 2016-01-12Bibliographically approved
In thesis
1. Mobilized Thermal Energy Storage for Heat Recovery for Distributed Heating
Open this publication in new window or tab >>Mobilized Thermal Energy Storage for Heat Recovery for Distributed Heating
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Conventional energy sources—oil and electricity—dominate the heat supply market. Due to their rising costs and their negative environmental effects on global climate change, it is necessary to develop an alternative heat supply system featuring low cost, high energy efficiency and environment friendliness. At present, it is often challenging to supply heat to detached buildings due to low energy efficiency and high distribution cost. Meanwhile, significant amounts of industrial waste and excess heat are released into the environment without recycling due to the difficulty of matching time and space differences between suppliers and end users. Phase change materials (PCMs), with the advantages of being storable and transportable, offer a solution for delivering that excess heat from industrial plants to detached buildings in sparse, rural areas.

 

The objective of this thesis is to study PCMs and latent thermal energy storage (LTES) technology, and to develop a mobilized thermal energy storage (M-TES) system that can use industrial waste or excess heat for heat recovery and distribution to areas in need.

 

Organic PCMs were chosen for study because they are non-toxic and non-corrosive, and they exhibit no phase separation and little sub-cooling when compared to inorganic PCMs. Two major issues including leakage of liquid PCMs and low thermal conductivity. Polyethylene glycol (PEG) was chosen to help analyze the thermal behavior of organic PCMs and PEG-based form-stable composites. To overcome the issue of low thermal conductivity, modified aluminum nitride (AlN) powder was added to the composites. Increased thermal conductivity traded off decreased latent heat. The PEG/EG composite, prepared by mixing the melted PEG into an expanded graphite (EG) matrix showed good thermal performance due to its large enthalpy and high thermal conductivity.

 

To make a systematic study of the M-TES system, a compact lab-scale system was designed and built. Characteristics of PCM were studied, and the performance of the direct-contact TES container was investigated. A case study using an M-TES system to deliver heat from a combined heat and power (CHP) plant to a small village was conducted. A technical and economic feasibility study was conducted for an integrated heat supply system using the M-TES system. In addition, the options for charging a TES container at a CHP plant were analyzed and compared from the viewpoints of power output, heat output and incomes.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2010
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 92
National Category
Engineering and Technology
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-11142 (URN)978-91-86135-98-0 (ISBN)
Public defence
2010-12-20, Lambda, Mälardalen University, Västerås, 10:00 (English)
Opponent
Supervisors
Projects
Ångpanneföreningens Forskningsstiftelse (ÅF)
Available from: 2010-11-22 Created: 2010-11-18 Last updated: 2010-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Yan, Jinyue

Search in DiVA

By author/editor
Wang, WeilongYan, Jinyue
By organisation
School of Sustainable Development of Society and Technology
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 224 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf