Increased exposure to stress may cause serious health problems leading to long term sick leave if undiagnosed and untreated. The practice amongst clinicians' to use a standardized procedure measuring blood pressure, ECG, finger temperature, breathing speed etc. to make a reliable diagnosis of stress and stress sensitivity is increasing. But even with these measurements it is still difficult to diagnose due to large individual variations. A computer-based system as a second option for the assessment and diagnosis of individual stress level is valuable in this domain.
A combined approach based on a calibration phase and case-based reasoning is proposed exploiting data from finger temperature sensor readings from 24 individuals. In calibration phase, a standard clinical procedure with six different steps helps to establish a person's stress profile and set up a number of individual parameters. When acquiring a new case, patients are also asked to provide a fuzzy evaluation on how reliable was the procedure to define the case itself. Such a reliability "level" could be used to further discriminate among similar cases. The system extracts key features from the signal and classifies individual sensitivity to stress. These features are stored into a case library and similarity measurements are taken to assess the degrees of matching and create a ranked list containing the most similar cases retrieved by using the nearest-neighbor algorithm.
A current case (CC) is compared with two other stored cases (C_92 and C_115) in the case library. The global similarity between the case CC and case C_92 is 67% and case CC and case C_115 is 80% shown by the system. So the case C_115 has ranked higher than the case C_92 and is more similar to current case CC. If necessary, the solution for the best matching case can be revised by the clinician to fit the new patient. The current problem with confirmed solution is then retained as a new case and added to the case library for future use.
The system allows us to utilize previous experience and at the same time diagnose stress along with a stress sensitivity profile. This information enables the clinician to make a more informed decision of treatment plan for the patients. Such a system may also be used to actively notify a person's stress levels even in the home environment.
http://abstrakt.sls.se/word/Medicinsk_teknik_och_fysik.doc