https://www.mdu.se/

mdu.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Systematic Literature Review on Hardware Reliability Assessment Methods for Deep Neural Networks
Tallinn University of Technology, Estonia.
Tallinn University of Technology, Estonia.
Tallinn University of Technology, Estonia.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Tallinn University of Technology, Estonia.
Show others and affiliations
2024 (English)In: ACM Computing Surveys, ISSN 0360-0300, E-ISSN 1557-7341, Vol. 56, no 6, article id 141Article in journal (Refereed) Published
Abstract [en]

Artificial Intelligence (AI) and, in particular, Machine Learning (ML), have emerged to be utilized in various applications due to their capability to learn how to solve complex problems. Over the past decade, rapid advances in ML have presented Deep Neural Networks (DNNs) consisting of a large number of neurons and layers. DNN Hardware Accelerators (DHAs) are leveraged to deploy DNNs in the target applications. Safety-critical applications, where hardware faults/errors would result in catastrophic consequences, also benefit from DHAs. Therefore, the reliability of DNNs is an essential subject of research. In recent years, several studies have been published accordingly to assess the reliability of DNNs. In this regard, various reliability assessment methods have been proposed on a variety of platforms and applications. Hence, there is a need to summarize the state-of-the-art to identify the gaps in the study of the reliability of DNNs. In this work, we conduct a Systematic Literature Review (SLR) on the reliability assessment methods of DNNs to collect relevant research works as much as possible, present a categorization of them, and address the open challenges. Through this SLR, three kinds of methods for reliability assessment of DNNs are identified, including Fault Injection (FI), Analytical, and Hybrid methods. Since the majority of works assess the DNN reliability by FI, we characterize different approaches and platforms of the FI method comprehensively. Moreover, Analytical and Hybrid methods are propounded. Thus, different reliability assessment methods for DNNs have been elaborated on their conducted DNN platforms and reliability evaluation metrics. Finally, we highlight the advantages and disadvantages of the identified methods and address the open challenges in the research area. We have concluded that Analytical and Hybrid methods are light-weight yet sufficiently accurate and have the potential to be extended in future research and to be utilized in establishing novel DNN reliability assessment frameworks.

Place, publisher, year, edition, pages
ASSOC COMPUTING MACHINERY , 2024. Vol. 56, no 6, article id 141
Keywords [en]
Reliability assessment, deep neural networks, DNN hardware accelerator, fault injection
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-66411DOI: 10.1145/3638242ISI: 001208566200007Scopus ID: 2-s2.0-85188964919OAI: oai:DiVA.org:mdh-66411DiVA, id: diva2:1850264
Available from: 2024-04-10 Created: 2024-04-10 Last updated: 2024-05-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Daneshtalab, Masoud

Search in DiVA

By author/editor
Daneshtalab, Masoud
By organisation
Embedded Systems
In the same journal
ACM Computing Surveys
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 331 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf