https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sample size prediction for anomaly detection in locks
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. ASSA ABLOY.
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0002-9933-8532
RISE Research Institutes of Sweden, Västerås, 72212, Sweden.
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0003-1597-6738
2023 (English)In: Procedia CIRP, Elsevier B.V. , 2023, p. 870-874Conference paper, Published paper (Refereed)
Abstract [en]

Artificial intelligence in manufacturing systems is currently most used for quality control and predictive maintenance. In the lock industry, quality control of final assembled cylinder lock is still done by hand, wearing out the operators' wrists and introducing subjectivity which negatively affects reliability. Studies have shown that quality control can be automated using machine-learning to analyse torque measurements from the locks. The resulting performance of the approach depends on the dimensionality and size of the training dataset but unfortunately, the process of gathering data can be expensive so the amount collected data should therefore be minimized with respect to an acceptable performance measure. The dimensionality can be reduced with a method called Principal Component Analysis and the training dataset size can be estimated by repeated testing of the algorithms with smaller datasets of different sizes, which then can be used to extrapolate the expected performance for larger datasets. The purpose of this study is to evaluate the state-of-the-art methods to predict and minimize the needed sample size for commonly used machine-learning algorithms to reach an acceptable anomaly detection accuracy using torque measurements from locks. The results show that the learning curve with the best fit to the training data does not always give the best predictions. Instead, performance depends on the amount of data used to create the curve and the particular machine-learning algorithm used. Overall, the exponential and power-law functions gave the most reliable predictions and the use of principal component analysis greatly reduced the learning effort for the machine-learning algorithms. With torque measurements from 50-150 locks, we predicted a detection accuracy of over 95% while the current method of using the human tactile sense gives only 16% accuracy.

Place, publisher, year, edition, pages
Elsevier B.V. , 2023. p. 870-874
Keywords [en]
Anomaly detection, Learning curves, Machine learning, Quality control, Sample size prediction
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:mdh:diva-66095DOI: 10.1016/j.procir.2023.09.090Scopus ID: 2-s2.0-85184582755OAI: oai:DiVA.org:mdh-66095DiVA, id: diva2:1839177
Conference
Procedia CIRP
Available from: 2024-02-20 Created: 2024-02-20 Last updated: 2024-04-26Bibliographically approved
In thesis
1. Automated Tactile Sensing for Quality Control of Locks Using Machine Learning
Open this publication in new window or tab >>Automated Tactile Sensing for Quality Control of Locks Using Machine Learning
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis delves into the use of Artificial Intelligence (AI) for quality control in manufacturing systems, with a particular focus on anomaly detection through the analysis of torque measurements in rotating mechanical systems. The research specifically examines the effectiveness of torque measurements in quality control of locks, challenging the traditional method that relies on human tactile sense for detecting mechanical anomalies. This conventional approach, while widely used, has been found to yield inconsistent results and poses physical strain on operators. A key aspect of this study involves conducting experiments on locks using torque measurements to identify mechanical anomalies. This method represents a shift from the subjective and physically demanding practice of manually testing each lock. The research aims to demonstrate that an automated, AI-driven approach can offer more consistent and reliable results, thereby improving overall product quality. The development of a machine learning model for this purpose starts with the collection of training data, a process that can be costly and disruptive to normal workflow. Therefore, this thesis also investigates strategies for predicting and minimizing the sample size used for training. Additionally, it addresses the critical need of trustworthiness in AI systems used for final quality control. The research explores how to utilize machine learning models that are not only effective in detecting anomalies but also offers a level of interpretability, avoiding the pitfalls of black box AI models. Overall, this thesis contributes to advancing automated quality control by exploring the state-of-the-art machine learning algorithms for mechanical fault detection, focusing on sample size prediction and minimization and also model interpretability. To the best of the author’s knowledge, it is the first study that evaluates an AI-driven solution for quality control of mechanical locks, marking an innovation in the field.

Abstract [sv]

Denna avhandling fördjupar sig i användningen av Artificiell Intelligens (AI) för kvalitetskontroll i tillverkningssystem, med särskilt fokus på anomalidetektion genom analys av momentmätningar i roterande mekaniska system. Forskningen undersöker specifikt effektiviteten av momentmätningar för kvalitetskontroll av lås, vilket utmanar den traditionella metoden som förlitar sig på människans taktila sinne för att upptäcka mekaniska anomalier. Denna konventionella metod, som är brett använd, har visat sig ge inkonsekventa resultat och medför fysisk belastning för operatörerna. En nyckelaspekt av denna studie innebär att genomföra experiment på lås med hjälp av momentmätningar för att identifiera mekaniska anomalier. Denna metod representerar en övergång från den subjektiva och fysiskt krävande praxisen att manuellt testa varje lås. Forskningen syftar till att demonstrera att en automatiserad, AI-driven metod kan erbjuda mer konsekventa och tillförlitliga resultat, och därmed förbättra den övergripande produktkvaliteten. Utvecklingen av en maskininlärningsmodell för detta ändamål börjar med insamling av träningsdata, en process som kan vara kostsam och störande för det normala arbetsflödet. Därför undersöker denna avhandling också strategier för att förutsäga och minimera mängden av data som används för träning. Dessutom adresseras det kritiska behovet av tillförlitlighet i AI-system som används för slutlig kvalitetskontroll. Forskningen utforskar hur man kan använda maskininlärningsmodeller som inte bara är effektiva för att upptäcka anomalier, utan också erbjuder en nivå av tolkningsbarhet, för att undvika fallgroparna med svart låda AI-modeller. Sammantaget bidrar denna avhandling till att främja automatiserad kvalitetskontroll genom att utforska de senaste maskininlärningsalgoritmerna för detektion av mekaniska fel, med fokus på prediktion och minimering av mängden träningsdata samt tolkbarheten av modellens beslut. Denna avhandling utgör det första försöket att utvärdera en AI-driven strategi för kvalitetskontroll av mekaniska lås, vilket utgör en nyskapande innovation inom området.

Place, publisher, year, edition, pages
Västerås: Mälardalens universitet, 2024. p. 49
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 360
Keywords
Anomaly detection, Sample size prediction, Learning curves, Machine learning, Quality control, : Explainable artificial intelligence, Counterfactual explanation
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-66506 (URN)978-91-7485-648-4 (ISBN)
Presentation
2024-06-07, C3-003, Mälardalens universitet, Eskilstuna, 09:15 (English)
Opponent
Supervisors
Funder
Knowledge Foundation, No 20200132 01 H
Available from: 2024-04-25 Created: 2024-04-24 Last updated: 2024-05-17Bibliographically approved

Open Access in DiVA

fulltext(677 kB)33 downloads
File information
File name FULLTEXT01.pdfFile size 677 kBChecksum SHA-512
4d68637755e5dd6773aecc014c7c0f29970a8035800011392e6ef081ecf7abf66f14f438380781274dc65005484263a9c581a271f55673d7e21146afad426803
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Andersson, TimAhlskog, MatsBohlin, Markus

Search in DiVA

By author/editor
Andersson, TimAhlskog, MatsBohlin, Markus
By organisation
Embedded SystemsInnovation and Product Realisation
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 33 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 234 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf