https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
PredLife: Predicting Fine-Grained Future Activity Patterns
Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba 2770882, Japan.;Univ Tokyo, Informat Technol Ctr, Kashiwa, Chiba 2770882, Japan..
Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba 2770882, Japan..
Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba 2770882, Japan.;Locat Mind Inc, Tokyo 1010048, Japan..
Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba 2770882, Japan..
Show others and affiliations
2023 (English)In: IEEE Transactions on Big Data, E-ISSN 2332-7790, Vol. 9, no 6, p. 1658-1669Article in journal (Refereed) Published
Abstract [en]

Activity pattern prediction is a critical part of urban computing, urban planning, intelligent transportation, and so on. Based on a dataset with more than 10 million GPS trajectory records collected by mobile sensors, this research proposed a CNN-BiLSTM-VAE-ATT-based encoder-decoder model for fine-grained individual activity sequence prediction. The model combines the long-term and short-term dependencies crosswise and also considers randomness, diversity, and uncertainty of individual activity patterns. The proposed results show higher accuracy compared to the ten baselines. The model can generate high diversity results while approximating the original activity patterns distribution. Moreover, the model also has interpretability in revealing the time dependency importance of the activity pattern prediction.

Place, publisher, year, edition, pages
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2023. Vol. 9, no 6, p. 1658-1669
Keywords [en]
Activity pattern prediction, Human mobility, Big GPS data, Variational autoencoder, LSTM
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:mdh:diva-65131DOI: 10.1109/TBDATA.2023.3310241ISI: 001107490500009Scopus ID: 2-s2.0-85169689406OAI: oai:DiVA.org:mdh-65131DiVA, id: diva2:1821375
Available from: 2023-12-20 Created: 2023-12-20 Last updated: 2024-01-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Shi, Xiaodan

Search in DiVA

By author/editor
Shi, XiaodanKobayashi, Hill Hiroki
By organisation
Future Energy Center
In the same journal
IEEE Transactions on Big Data
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf