https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative Evaluation of Various Generations of Controller Area Network Based on Timing Analysis
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
Arcticus Systems, Järfälla, Sweden.
Arcticus Systems, Järfälla, Sweden.
HIAB, Hudiksvall, Sweden.
Show others and affiliations
2023 (English)In: IEEE Int. Conf. Emerging Technol. Factory Autom., ETFA, Institute of Electrical and Electronics Engineers Inc. , 2023Conference paper, Published paper (Refereed)
Abstract [en]

This paper performs a comparative evaluation of various generations of Controller Area Network (CAN), including the classical CAN, CAN Flexible Data-Rate (FD), and CAN Extra Long (XL). We utilize response-time analysis for the evaluation. In this regard, we identify that the state of the art lacks the response-time analysis for CAN XL. Hence, we discuss the worst-case transmission times calculations for CAN XL frames and incorporate them to the existing analysis for CAN to support response-time analysis of CAN XL frames. Using the extended analysis, we perform a comparative evaluation of the three generations of CAN by analyzing an automotive industrial use case. In crux, we show that using CAN FD is more advantageous than the classical CAN and CAN XL when using frames with payloads of up to 8 bytes, despite the fact that CAN XL supports higher bit rates. For frames with 12-64 bytes payloads, CAN FD performs better than CAN XL when running at the same bit rate, but CAN XL performs better when running at a higher bit rate. Additionally, we discovered that CAN XL performs better than the classical CAN and CAN FD when the frame payload is over 64 bytes, even if it runs at the same or higher bit rates than CAN FD.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc. , 2023.
Keywords [en]
automotive, CAN FD, CAN XL, Controller Area Network, Control system synthesis, Controllers, Finite difference method, Process control, Automotives, Classical controllers, Comparative evaluations, Controller area network flexible data-rate, Controller area network XL, Controller-area network, Data-rate, Response-time analysis, Timing circuits
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:mdh:diva-64693DOI: 10.1109/ETFA54631.2023.10275549Scopus ID: 2-s2.0-85175488822ISBN: 9798350339918 (print)OAI: oai:DiVA.org:mdh-64693DiVA, id: diva2:1810950
Conference
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA
Available from: 2023-11-09 Created: 2023-11-09 Last updated: 2024-10-02Bibliographically approved
In thesis
1. Integration and timing analysis of TSN and CAN networks
Open this publication in new window or tab >>Integration and timing analysis of TSN and CAN networks
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Modern embedded systems, particularly in the automotive domain, have seen significant advancements in functionality and complexity. This has driven demand for high data-rate sensors such as cameras, radars, and lidars, which generate vast amounts of data that require transmission with low, predictable latencies. However, traditional onboard communication protocols in the automotive domain, such as Controller Area Network (CAN), have limited support for these requirements. The IEEE Time-Sensitive Networking (TSN) standards have emerged as a solution, providing high-speed, low-latency communication that can be used as a backbone network connecting nodes and networks in the system. The challenge lies in fully utilizing TSN while maintaining compatibility with low-cost legacy CAN systems. This thesis aims to address the challenges of integrating CAN and TSN networks. We investigate various design techniques for the gateway that connects a CAN domain to a TSN domain, ultimately proposing the interface architecture for a CAN-TSN gateway. During our investigation, we identified the lack of timing analysis for the next generations of CAN, namely CAN Flexible Data-rate (FD) and CAN Extra Long (XL), and developed timing analysis for them. We further develop the analysis for the CAN-TSN gateway. As part of the thesis and working towards a scheduling method for TSN traffic sent by a CAN-TSN gateway, we extend a heuristic algorithm to schedule TSN traffic, increasing the schedulability of lower-priority traffic,  particularly in scenarios involving the use or non-use of frame preemption in TSN. Finally, we demonstrate the proof of concept by implementing the timing analysis in an industrial tool suite and through an industrial use case utilizing the gateway. This demonstrates the feasibility and potential benefits of integrating CAN and TSN networks.

Place, publisher, year, edition, pages
Västerås: Mälardalens universitet, 2024
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 366
Keywords
Controller Area Network, Time-sensitive Network, Gateway
National Category
Embedded Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-68565 (URN)978-91-7485-682-8 (ISBN)
Presentation
2024-11-14, room Pi and via Zoom., Mälardalens universitet, Västerås, 13:15 (English)
Opponent
Supervisors
Available from: 2024-10-02 Created: 2024-10-02 Last updated: 2024-10-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Berisa, AldinAshjaei, Seyed Mohammad HosseinDaneshtalab, MasoudSjödin, MikaelMubeen, Saad

Search in DiVA

By author/editor
Berisa, AldinAshjaei, Seyed Mohammad HosseinDaneshtalab, MasoudSjödin, MikaelMubeen, Saad
By organisation
Embedded Systems
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 172 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf