In this paper, the representations of color hom-Lie algebras have been reviewed and the existence of a series of coboundary operators is demonstrated. Moreover, the notion of a color omni-hom-Lie algebra associated to a linear space and an even invertible linear map have been introduced. In addition, characterization method for regular color hom-Lie algebra structures on a linear space is examined and it is shown that the underlying algebraic structure of the color omni-hom-Lie algebra is a color hom-Leibniz a algebra.