https://www.mdu.se/

mdu.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of deep learning for segmentation of bubble dynamics in subcooled boiling
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0002-2978-6217
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-8466-356X
Show others and affiliations
2023 (English)In: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 169, article id 104589Article in journal (Refereed) Published
Abstract [en]

The present work focuses on designing a robust deep-learning model to track bubble dynamics in a vertical rectangular mini-channel. The rectangular mini-channel is heated from one side with a constant heat flux, resulting in the creation of bubbles. Images of the bubbles are recorded using a high-speed camera, which serve as the input data for the deep learning model. The raw image data acquired from the high-speed camera is inherently noisy due to the presence of shadows, reflections, background noise, and chaotic bubbles. The objective is to extract the mask of the bubble given all these challenging factors. Transfer learning is adopted to eliminate the need for a large dataset to train the deep learning model and also to reduce computational costs. The trained model is then validated against the validation datasets, demonstrating an accuracy of 98% while detecting the bubbles. The model is then evaluated on different experimental conditions, such as lighting, background, and blurry images with noise. The model demonstrates high robustness to different conditions and is able to detect the edges of the bubbles and classify them accurately. Moreover, the model achieves an average intersection over union of 85%, indicating a high level of accuracy in predicting the masks of the bubbles. The method enables accurate recognition and tracking of individual bubble dynamics, capturing their coalescence, oscillation, and collisions to estimate local parameters by proving the bubble masks. This allows for a comprehensive understanding of their spatial-temporal behaviour, including the estimation of local Reynolds numbers.

Place, publisher, year, edition, pages
2023. Vol. 169, article id 104589
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-64495DOI: 10.1016/j.ijmultiphaseflow.2023.104589ISI: 001070346100001Scopus ID: 2-s2.0-85172483742OAI: oai:DiVA.org:mdh-64495DiVA, id: diva2:1804012
Available from: 2023-10-11 Created: 2023-10-11 Last updated: 2023-11-29Bibliographically approved
In thesis
1. Machine Learning Techniques for Enhanced Heat Transfer Modelling
Open this publication in new window or tab >>Machine Learning Techniques for Enhanced Heat Transfer Modelling
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

With the continuous growth of global energy demand, processes from power generation to electronics cooling become vitally important. The role of heat transfer in these processes is crucial, facilitating effective monitoring, control, and optimisation. Therefore, advancements and understanding of heat transfer directly correlate to system performance, lifespan, safety, and cost-effectiveness, and they serve as key components in addressing the world's increasing energy needs.

The field of heat transfer faces the challenge of needing intensive studies while retaining fast computational speeds to allow for system optimisation. While advancements in computational power are significant, current numerical models lack in handling complex physical problems such as ill-posed. The domain of heat transfer is rapidly evolving, driven by a wealth of data from experimental measurements and numerical simulations. This data influx presents an opportunity for machine learning techniques, which can be used to harness meaningful insights about the underlying physics.

Therefore, the current thesis aims to the explore machine learning methods concerning heat transfer problems. More precisely, the study looks into advanced algorithms such as deep, convolutional, and physics-informed neural networks to tackle two types of heat transfer: subcooled boiling and convective heat transfer. The thesis further addresses the effective use of data through transfer learning and optimal sensor placement when available data is sparse, to learn the system behaviour. This technique reduces the need for extensive datasets and allows models to be trained more efficiently. An additional aspect of this thesis revolves around developing robust machine learning models. Therefore, significant efforts have been directed towards accounting for the uncertainty present in the model, which can further illuminate the model’s behaviour. This thesis shows the machine learning model's ability for accurate prediction. It offers insights into various parameters and handles uncertainties and ill-posed problems. The study emphasises machine learning's role in optimising heat transfer processes. The findings highlight the potential of synergistic application between traditional methodologies and machine learning models. These synergies can significantly enhance the design of systems, leading to greater efficiency.

Place, publisher, year, edition, pages
Västerås: Mälardalens universitet, 2024
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 399
National Category
Engineering and Technology Energy Engineering
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-64898 (URN)978-91-7485-625-5 (ISBN)
Public defence
2024-02-13, Delta, Mälardalens universitet, Västerås, 09:00 (English)
Opponent
Supervisors
Available from: 2023-12-01 Created: 2023-11-29 Last updated: 2024-01-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Soibam, JerolScheiff, ValentinAslanidou, IoannaKyprianidis, KonstantinosBel Fdhila, Rebei

Search in DiVA

By author/editor
Soibam, JerolScheiff, ValentinAslanidou, IoannaKyprianidis, KonstantinosBel Fdhila, Rebei
By organisation
Future Energy CenterInnovation and Product Realisation
In the same journal
International Journal of Multiphase Flow
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 133 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf