Open this publication in new window or tab >>Show others...
2021 (English)In: Advances in Science, Technology and Engineering Systems, ISSN 2415-6698, Vol. 6, no 1, p. 658-671Article in journal (Refereed) Published
Abstract [en]
Modulation type classification is a part of waveform estimation required to employ spectrum sharing scenarios like dynamic spectrum access that allow more efficient spectrum utilization. In this work multiple classification features, feature extraction, and classification algorithms for modulation type classification have been studied and compared in terms of classification speed and accuracy to suggest the optimal algorithm for deployment on our target application hardware. The training and validation of the machine learning classifiers have been performed using artificial data. The possibility to use instantaneous values of the time domain signal has shown acceptable performance for the binary classification between BPSK and 2FSK: Both ensemble boosted trees with 30 decision trees learners trained using AdaBoost sampling and fine decision trees have shown optimal performance in terms of both an average classification accuracy (86.3 % and 86.0 %) and classification speed (120 0000 objects per second) for additive white gaussian noise (AWGN) channel with signal-to-noise ratio (SNR) ranging between 1 and 30 dB. However, for the classification between five modulation classes demonstrated average classification accuracy has reached only 78.1 % in validation. Statistical features: Mean, Standard Deviation, Kurtosis, Skewness, Median Absolute Deviation, Root-Mean-Square level, Zero Crossing Rate, Interquartile Range and 75th Percentile derived from the wavelet transform of the received signal observed during 100 and 500 microseconds were studied using fractional factorial design to determine the features with the highest effect on the response variables: classification accuracy and speed for the additive white gaussian noise and Rician line of sight multipath channel. The highest classification speed of 170 000 objects/second and 100 % classification accuracy has been demonstrated by fine decision trees using as an input Kurtosis derived from the wavelet coefficients derived from signal observed during 100 microseconds for AWGN channel. For the line of sight fading Rician channel with AWGN demonstrated classification speed is slower 130 000 objects/s.
Place, publisher, year, edition, pages
ASTES Publishers, 2021
Keywords
Cognitive radio, Machine learning, Modulation classification
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:mdh:diva-53579 (URN)10.25046/aj060172 (DOI)2-s2.0-85101023812 (Scopus ID)
Note
Export Date: 5 March 2021; Article; Correspondence Address: Valieva, I.; School of Innovation, Sweden; email: inna.valieva@mdh.se
2021-03-052021-03-052023-03-10Bibliographically approved