https://www.mdu.se/

mdu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of railyard congestion and departure delay relationship: a case study from swedish railways
KTH, Transportplanering.ORCID iD: 0000-0002-4945-3663
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation. KTH, Transportplanering, Sweden.ORCID iD: 0000-0003-1597-6738
KTH, Transportplanering.ORCID iD: 0000-0001-5269-4356
2021 (English)Conference paper, Oral presentation only (Refereed)
Abstract [en]

In this paper we propose a macroscopic model framework for departure delay prediction from railyards. The railyard is a large area comprising three sub-yards (arrival, classification, departure). In fact, timely operation at railyard is dependent on coordinated operations in these sub-yards. More importantly, punctual functioning of railyards is crucial for increasing competitiveness of rail freight services throughout the network. Despite previous models, we considered railyard congestion at the arrival yard, time availability of each wagon at the classification yard, and time availability of locomotive at the departure yard. The core part of this paper analyzes the effect of congestion at arrival yard on departure delays. Punctuality data from two Swedish railyards for a seven-year period is used. The congestion is defined as the number of arriving trains three hours before each departure. The results showed that the highest number of delayed departures occur at congestion levels of 4-10, while correlation coefficient is around zero. Analysing the whole dataset reveals that these congestion levels are common for all departures not just the delayed ones. Therefore, we conclude that as three sub-yards are interrelated, a comprehensive definition of congestion at railyard level is required. An elaborate definition of congestion can make it a proper predictor for further delay prediction models.

Place, publisher, year, edition, pages
2021.
Keywords [en]
Departure Delay Prediction, Congestion, Railyards, FR8HUB, Shift2Rail
National Category
Transport Systems and Logistics
Research subject
Transport Science; Transport Science, Transport Systems; Järnvägsgruppen - Effektiva tågsystem för godstrafik; Järnvägsgruppen - Kapacitet
Identifiers
URN: urn:nbn:se:mdh:diva-61262OAI: oai:DiVA.org:mdh-61262DiVA, id: diva2:1719266
Conference
hEART 2020 : 9th Symposium of the European Association for Research in Transportation, Lyon, France
Projects
Shift2RailFR8HUB
Funder
Swedish Transport Administration
Note

QC 20201130

Available from: 2020-11-02 Created: 2022-12-14 Last updated: 2023-09-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Conference webpage

Authority records

Minbashi, NiloofarBohlin, MarkusKordnejad, Behzad

Search in DiVA

By author/editor
Minbashi, NiloofarBohlin, MarkusKordnejad, Behzad
By organisation
Innovation and Product Realisation
Transport Systems and Logistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 73 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf