https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimized shunting with mixed-usage tracks
RISE - Research Institutes of Sweden (2017-2019), SICS, Sweden.ORCID iD: 0000-0003-1597-6738
RISE., SICS.ORCID iD: 0000-0003-4456-9453
Show others and affiliations
2013 (English)Report (Other academic)
Abstract [en]

We consider the planning of railway freight classification at hump yards, where the problem involves the formation of departing freight train blocks from arriving trains subject to scheduling and capacity constraints. The hump yard layout considered consists of arrival tracks of sufficient length at an arrival yard, a hump, classification tracks of non-uniform and possibly non-sufficient length at a classification yard, and departure tracks of sufficient length. To increase yard capacity, freight cars arriving early can be stored temporarily on specific mixed-usage tracks. The entire hump yard planning process is covered in this paper, and heuristics for arrival and departure track assignment, as well as hump scheduling, have been included to provide the neccessary input data. However, the central problem considered is the classification track allocation problem. This problem has previously been modeled using direct mixed integer programming models, but this approach did not yield lower bounds of sufficient quality to prove optimality. Later attempts focused on a column generation approach based on branch-and-price that could solve problem instances of industrial size. Building upon the column generation approach we introduce a direct arc-based integer programming model, where the arcs are precedence relations between blocks on the same classification track. Further, the most promising models are adapted for rolling-horizon planning. We evaluate the methods on historical data from the Hallsberg shunting yard in Sweden. The results show that the new arc-based model performs as well as the column generation approach. It returns an optimal schedule within the execution time limit for all instances but from one, and executes as fast as the column generation approach. Further, the short execution times of the column generation approach and the arc-indexed model make them suitable for rolling-horizon planning, while the direct mixed integer program proved to be too slow for this. Extended analysis of the results shows that mixing was only required if the maximum number of concurrent trains on the classification yard exceeds 29 (there are 32 available tracks), and that after this point the number of extra car roll-ins increases heavily.

Place, publisher, year, edition, pages
Kista, Sweden: Swedish Institute of Computer Science , 2013, 16.
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:mdh:diva-61242OAI: oai:DiVA.org:mdh-61242DiVA, id: diva2:1719232
Available from: 2022-12-14 Created: 2022-12-14 Last updated: 2022-12-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Bohlin, MarkusGestrelius, Sara

Search in DiVA

By author/editor
Bohlin, MarkusGestrelius, Sara
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf