Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt218",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1013",{id:"formSmash:j_idt1013",widgetVar:"widget_formSmash_j_idt1013",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

####

#### Authority records

Nohrouzian, Hossein
#### Search in DiVA

##### By author/editor

Nohrouzian, Hossein
##### By organisation

Educational Sciences and Mathematics
On the subject

Mathematics
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1203_0_downloads',{id:'formSmash:j_idt1203:0:downloads',type:'bar',responsive:true,data:[[8,16,32,7,12,9,7,8,6,18]],title:"Downloads of File (FULLTEXT02)",axes:{yaxis: {label:"",min:0,max:40,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1701854'}],ticks:["Feb -23","Mar -23","Apr -23","May -23","Jun -23","Jul -23","Aug -23","Sep -23","Oct -23","Nov -23"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 169 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1206",{id:"formSmash:j_idt1206",widgetVar:"widget_formSmash_j_idt1206",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1209",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[14,11,133,85,41,55,76,82,22,45]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:140,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1701854'}],ticks:["Feb -23","Mar -23","Apr -23","May -23","Jun -23","Jul -23","Aug -23","Sep -23","Oct -23","Nov -23"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 1141 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1302",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt197",{id:"formSmash:upper:j_idt197",widgetVar:"widget_formSmash_upper_j_idt197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt198_j_idt200",{id:"formSmash:upper:j_idt198:j_idt200",widgetVar:"widget_formSmash_upper_j_idt198_j_idt200",target:"formSmash:upper:j_idt198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A Cubature Method for Solving Stochastic Equations: A Modern Monte-Carlo Approach with Applications to Financial MarketPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Västerås: Mälardalens universitet, 2022.
##### Series

Mälardalen University Press Dissertations, ISSN 1651-4238 ; 369
##### National Category

Mathematics
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-60164ISBN: 978-91-7485-568-5 (print)OAI: oai:DiVA.org:mdh-60164DiVA, id: diva2:1701854
##### Public defence

2022-12-02, Beta, Mälardalens universitet, Västerås, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt494",{id:"formSmash:j_idt494",widgetVar:"widget_formSmash_j_idt494",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt500",{id:"formSmash:j_idt500",widgetVar:"widget_formSmash_j_idt500",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt506",{id:"formSmash:j_idt506",widgetVar:"widget_formSmash_j_idt506",multiple:true}); Available from: 2022-10-12 Created: 2022-10-07 Last updated: 2022-11-11Bibliographically approved
##### List of papers

Before the financial crisis started in 2007, there were no significant spreads between the forward rate curves constructed either using the market quotes of overnight indexed swaps or those of forward rate agreements. After the crisis, we observe such spreads in the form of forward spread curves.

In a popular approach pioneered by Heath, Jarrow, and Morton, the above curves satisfy a system of infinite-dimensional stochastic integral equations. In fact, the solution is a random field, or a random function of two real variables. By fixing the value of the second variable, one obtains a finite set of random forward spread curves, one for each maturity. Varying the above value generates the curves “in motion”.

A standard approach to solve such a system is to replace it by a “discrete” version in the following order: first introduce discrete space, then discrete time, and finally, a discrete set of solutions. A modern approach starts by introducing a discrete space of solutions called a “cubature formulae on Wiener space”. An advantage of the modern approach is that the obtained system of equations becomes deterministic rather than stochastic and may be easily solved by standard finite-difference or finite-element methods.

The thesis contains the followings new important results. The market model under consideration is large, that is, it includes infinitely many financial instruments. We reviewed existing approaches for finding conditions of no arbitrage on such a market with only one forward spread curve. First, we extended one of the approaches to the case of multiple curves and proved sufficient conditions for absence of arbitrage on such a large market. Second, we found conditions under which the solution to our system of equations is unique and non-negative. Third, using the theory of free Lie algebra, we found new cubature formulae on Wiener space and extensively tested them using the celebrated Black–Scholes equation as an input. Forth, using the results of cubature formula of degree 5, we evaluated the forward and short rates in the Heath–Jarrow–Morton and Hull–White (one-factor) models. Finally, using the same results, we constructed a new trinomial tree model for Black–Scholes–Merton and Black models.

In future research, we plan to apply the obtained formulae to solve some systems of infinite-dimensional stochastic equations describing mathematical models of spread curves. Further, we plan to use the obtained formulae to deal with backward stochastic differential equations.

1. An Algebraic Method for Pricing Financial Instruments on Post-crisis Market$(function(){PrimeFaces.cw("OverlayPanel","overlay1449819",{id:"formSmash:j_idt563:0:j_idt567",widgetVar:"overlay1449819",target:"formSmash:j_idt563:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. An Arbitrage-Free Large Market Model for Forward Spread Curves$(function(){PrimeFaces.cw("OverlayPanel","overlay1530954",{id:"formSmash:j_idt563:1:j_idt567",widgetVar:"overlay1530954",target:"formSmash:j_idt563:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Testing Cubature Formulae on Wiener Space vs Explicit Pricing Formulae$(function(){PrimeFaces.cw("OverlayPanel","overlay1701808",{id:"formSmash:j_idt563:2:j_idt567",widgetVar:"overlay1701808",target:"formSmash:j_idt563:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Evolution of forward curves in the Heath–Jarrow–Morton framework by cubature method on Wiener space$(function(){PrimeFaces.cw("OverlayPanel","overlay1619264",{id:"formSmash:j_idt563:3:j_idt567",widgetVar:"overlay1619264",target:"formSmash:j_idt563:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Pricing Financial Derivatives in the Hull-White Model Using Cubature Methods on Wiener Space$(function(){PrimeFaces.cw("OverlayPanel","overlay1686170",{id:"formSmash:j_idt563:4:j_idt567",widgetVar:"overlay1686170",target:"formSmash:j_idt563:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Constructing Trinomial Models Based on Cubature Method on Wiener Space: Applications to Pricing Financial Derivatives$(function(){PrimeFaces.cw("OverlayPanel","overlay1701810",{id:"formSmash:j_idt563:5:j_idt567",widgetVar:"overlay1701810",target:"formSmash:j_idt563:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1231",{id:"formSmash:j_idt1231",widgetVar:"widget_formSmash_j_idt1231",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1284",{id:"formSmash:lower:j_idt1284",widgetVar:"widget_formSmash_lower_j_idt1284",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1285_j_idt1287",{id:"formSmash:lower:j_idt1285:j_idt1287",widgetVar:"widget_formSmash_lower_j_idt1285_j_idt1287",target:"formSmash:lower:j_idt1285:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});