We study the cohomology of the moduli space of genus three curves with level two structure and some related spaces. In particular, we determine the cohomology groups of the moduli space of plane quartics with level two structure as representations of the symplectic group on a six dimensional vector space over the field of two elements. We also make the analogous computations for some related spaces such as moduli spaces of genus three curves with a marked point and strata of the moduli space of Abelian differentials of genus three.