Thermal comfort conditions profoundly affect the occupants' health and productivity. A diffuse ceiling ventilation system is an air distribution system in which the air is supplied to the occupied zone with relatively a low velocity through the perforated panels installed in the ceiling. The current study evaluated the impact of diffuse ceiling design parameters, i.e. diffuse panel configurations and heat load distributions, on the thermal comfort condition of the occupants. In this regard, the computational fluid dynamics technique was used to evaluate thermal comfort conditions in a waiting room, meeting room and office. The central and dispersal configuration of active diffuse panels was considered. The PMV-PPD model was applied to evaluate the overall occupants' comfort, while the draft rate was considered to assess local thermal comfort. The model validation was performed by comparing the collected laboratory measurement data. Overall, the results indicated that the central active diffuse panel configuration had a better thermal comfort than the dispersed one. The evaluation of dispersed configuration in realist scenarios, including office and waiting room, had the highest dissatisfaction, with a PPD value of 9%. Local thermal comfort assessment revealed that dispersed configuration had the highest draft rate of 14% in the office.