https://www.mdu.se/

mdu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Geophysical investigation of glass 'hotspots' in glass dumps as potential secondary raw material sources
Linnéuniversitetet, Institutionen för biologi och miljö (BOM).ORCID iD: 0000-0002-9012-1847
Lund University, Sweden.
Lund University, Sweden.
Sweco Environment AB, Sweden.
Show others and affiliations
2020 (English)In: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 106, p. 213-225Article in journal (Refereed) Published
Abstract [en]

This study investigates the potential for Electrical Resistivity Tomography (ERT) to detect buried glass ‘hotspots’ in a glass waste dump based on results from an open glass dump investigated initially. This detection potential is vital for excavation and later use of buried materials as secondary resources. After ERT, test pits (TPs) were excavated around suspected glass hotspots and physico-chemical characterisation of the materials was done. Hotspots were successfully identified as regions of high resistivity (>8000 Ωm) and were thus confirmed by TPs which indicated mean glass composition of 87.2% among samples (up to 99% in some). However, high discrepancies in material resistivities increased the risk for introduction of artefacts, thus increasing the degree of uncertainty with depth, whereas similarities in resistivity between granite bedrock and crystal glass presented data misinterpretation risks. Nevertheless, suitable survey design, careful field procedures and caution exercised by basing data interpretations primarily on TP excavation observations generated good results particularly for near-surface materials, which is useful since glass waste dumps are inherently shallow. Thus, ERT could be a useful technique for obtaining more homogeneous excavated glass and other materials for use as secondary resources in metal extraction and other waste recycling techniques while eliminating complicated and often costly waste sorting needs.

Place, publisher, year, edition, pages
Elsevier , 2020. Vol. 106, p. 213-225
Keywords [en]
Electrical resistivity tomography, secondary resources, glass waste, landfill mining, waste characterisation, circular economy
National Category
Geophysical Engineering
Research subject
Environmental Science, Environmental technology; Natural Science, Environmental Science
Identifiers
URN: urn:nbn:se:mdh:diva-57950DOI: 10.1016/j.wasman.2020.03.027ISI: 000525840000027PubMedID: 32240938Scopus ID: 2-s2.0-85082613411OAI: oai:DiVA.org:mdh-57950DiVA, id: diva2:1651634
Funder
Vinnova, 2017-03244Available from: 2022-04-12 Created: 2022-04-12 Last updated: 2022-04-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Mutafela, Richard NasileleKaczala, FabioMarques, MarciaJani, YahyaHogland, William

Search in DiVA

By author/editor
Mutafela, Richard NasileleKaczala, FabioMarques, MarciaJani, YahyaHogland, William
In the same journal
Waste Management
Geophysical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf