https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient and Effective Generation of Test Cases for Pedestrian Detection - Search-based Software Testing of Baidu Apollo in SVL
Infotiv AB,Gothenburg,Sweden.
RISE Research Institutes of Sweden, Västerås, Sweden.ORCID iD: 0000-0003-3354-1463
RISE Research Institutes of Sweden, Västerås, Sweden.
Chalmers and the University of Gothenburg, Gothenburg, Sweden.
Show others and affiliations
2021 (English)In: Proceedings - 3rd IEEE International Conference on Artificial Intelligence Testing, AITest 2021, 2021, p. 103-110Conference paper, Published paper (Refereed)
Abstract [en]

With the growing capabilities of autonomous vehicles, there is a higher demand for sophisticated and pragmatic quality assurance approaches for machine learning-enabled systems in the automotive AI context. The use of simulation-based prototyping platforms provides the possibility for early-stage testing, enabling inexpensive testing and the ability to capture critical corner-case test scenarios. Simulation-based testing properly complements conventional on-road testing. However, due to the large space of test input parameters in these systems, the efficient generation of effective test scenarios leading to the unveiling of failures is a challenge. This paper presents a study on testing pedestrian detection and emergency braking system of the Baidu Apollo autonomous driving platform within the SVL simulator. We propose an evolutionary automated test generation technique that generates failure-revealing scenarios for Apollo in the SVL environment. Our approach models the input space using a generic and flexible data structure and benefits a multi-criteria safety-based heuristic for the objective function targeted for optimization. This paper presents the results of our proposed test generation technique in the 2021 IEEE Autonomous Driving AI Test Challenge. In order to demonstrate the efficiency and effectiveness of our approach, we also report the results from a baseline random generation technique. Our evaluation shows that the proposed evolutionary test case generator is more effective at generating failure-revealing test cases and provides higher diversity between the generated failures than the random baseline.

Place, publisher, year, edition, pages
2021. p. 103-110
Keywords [en]
Search-Based Test Generation, Evolutionary Algorithm, Advanced Driver Assistance Systems, Pedestrian Detection, Automotive Simulators
National Category
Computer Systems Software Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-57608DOI: 10.1109/AITEST52744.2021.00030ISI: 000833266500019Scopus ID: 2-s2.0-85118804446ISBN: 9781665434812 (print)OAI: oai:DiVA.org:mdh-57608DiVA, id: diva2:1644065
Conference
3rd IEEE International Conference on Artificial Intelligence Testing, AITest 2021 Virtual, Online 23 August 2021 through 26 August 2021 Code 172710
Available from: 2022-03-12 Created: 2022-03-12 Last updated: 2024-12-20Bibliographically approved
In thesis
1. Intelligence-Driven Software Performance Assurance
Open this publication in new window or tab >>Intelligence-Driven Software Performance Assurance
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Software performance assurance is of great importance for the success of software products, which are nowadays involved in many parts of our life. Performance evaluation approaches such as performance modeling, testing, as well as runtime performance control methods, all can contribute to the realization of software performance assurance. Many of the common approaches to tackle challenges in this area involve relying on performance models or using system models and source code. Although modeling provides a deep insight into the system behavior, developing a  detailed model is challenging.  Furthermore, software artifacts such as models and source code might not be readily available at all times in the development lifecycle. This thesis focuses on leveraging the potential of machine learning (ML) and evolutionary search-based techniques to provide viable solutions for addressing the challenges in different aspects of software performance assurance efficiently and effectively.

In this thesis, we first investigate the capabilities of model-free reinforcement learning to address the objectives in robustness testing problems. We develop two self-adaptive reinforcement learning-driven test agents called SaFReL and RELOAD. They generate effective platform-based test scenarios and test workloads, respectively. The output scenarios and workloads help testers and software engineers meet their objectives efficiently without relying on models or source code. SaFReL and RELOAD learn the optimal policies (ways) to meet the test objectives and can reuse the learned policies adaptively in other testing settings. Policy reuse can lead to higher test efficiency and cost savings, for example, when testing similar test objectives or software systems with comparable performance sensitivity.

Next, we leverage the potential of evolutionary computation algorithms, i.e., genetic algorithms, evolution strategies, and particle swarm optimization, to generate failure-revealing test scenarios for robustness testing of AI systems. In this part, we choose autonomous driving systems as a prevailing example of contemporary AI systems. We study the efficacy of the proposed evolutionary search-based test generation techniques and evaluate primarily to what extent they can trigger failures. Moreover, we investigate the diversity of those failures and compare them to existing baseline solutions. 

Finally, we again use the potential of model-free reinforcement learning to develop adaptive ML-driven runtime performance control approaches. We present a response time preservation method for a sample type of industrial applications and a resource allocation technique for dynamic workloads in a data grid application. The proposed ML-driven techniques learn how to adjust the tunable parameters and resource configuration at runtime to keep the performance continually compliant with the requirements and to further optimize the runtime performance. We evaluate the efficacy of the approaches and show how effectively they can improve the performance and keep the performance requirements satisfied under varying conditions such as dynamic workloads and the occurrence of runtime events that lead to substantial response time deviations.

Place, publisher, year, edition, pages
Västerås: Mälardalens universitet, 2022
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 358
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-58065 (URN)978-91-7485-549-4 (ISBN)
Public defence
2022-06-03, Alfa, Mälardalens universitet, Västerås, 14:00 (English)
Opponent
Supervisors
Available from: 2022-04-20 Created: 2022-04-20 Last updated: 2022-11-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttps://ieeexplore.ieee.org/abstract/document/9564347

Search in DiVA

By author/editor
Helali Moghadam, Mahshid
Computer SystemsSoftware Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf