https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the numerical solution of identification hyperbolic-parabolic problems with the Neumann boundary condition
1Magtymguly Turkmen State University, Ashgabat, Turkmenistan.
Bahcesehir University, Istanbul, Turkey. (MAM)ORCID iD: 0000-0001-6708-3160
2018 (English)In: Bulletin of the Karaganda University - Mathematics, ISSN 2518-7929, Vol. 91, no 3, p. 69-74Article in journal (Refereed) Published
Abstract [en]

In the present study, a numerical study for source identification problems with the Neumann boundary condition for a one-dimensional hyperbolic-parabolic equation is presented. A first order of accuracy difference scheme for the numerical solution of the identification problems for hyperbolic-parabolic equations with the Neumann boundary condition is presented. This difference scheme is implemented for a simple test problem and the numerical results are presented.

Place, publisher, year, edition, pages
2018. Vol. 91, no 3, p. 69-74
National Category
Mathematical Analysis Computational Mathematics
Research subject
Mathematics/Applied Mathematics
Identifiers
URN: urn:nbn:se:mdh:diva-56222DOI: 10.31489/2018m3/69-74ISI: 000456246100009OAI: oai:DiVA.org:mdh-56222DiVA, id: diva2:1603328
Available from: 2021-10-15 Created: 2021-10-15 Last updated: 2021-11-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Ashyraliyev, Maksat

Search in DiVA

By author/editor
Ashyraliyev, Maksat
Mathematical AnalysisComputational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 143 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf