https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On hyperbolic-parabolic problems with involution and neumann boundary condition
Department of Mathematics, Bahcesehir University Istanbul – 34353, TURKEY. (MAM)ORCID iD: 0000-0001-6708-3160
2021 (English)In: International Journal of Applied Mathematics, ISSN 1311-1728, E-ISSN 1314-8060, Vol. 34, no 2, p. 363-376Article in journal (Refereed) Published
Abstract [en]

We study a nonlocal boundary value problem and a space-wise dependent source identification problem for one-dimensional hyperbolic-parabolic equation with involution and Neumann boundary condition. The stability estimates for the solutions of these two problems are established. The first order of accuracy stable difference schemes are constructed for the approximate solutions of the problems under consideration. Numerical results for two test problems are provided.

Place, publisher, year, edition, pages
2021. Vol. 34, no 2, p. 363-376
Keywords [en]
Computational Theory and Mathematics, General Mathematics
National Category
Mathematical Analysis Computational Mathematics
Research subject
Mathematics/Applied Mathematics
Identifiers
URN: urn:nbn:se:mdh:diva-56216DOI: 10.12732/ijam.v34i2.12Scopus ID: 2-s2.0-85106586263OAI: oai:DiVA.org:mdh-56216DiVA, id: diva2:1603316
Available from: 2021-10-15 Created: 2021-10-15 Last updated: 2023-05-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ashyraliyev, Maksat

Search in DiVA

By author/editor
Ashyraliyev, Maksat
In the same journal
International Journal of Applied Mathematics
Mathematical AnalysisComputational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 115 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf