Conceptual Design and Energy Storage Positioning Aspects for a Hybrid-Electric Light AircraftShow others and affiliations
2021 (English)In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 143, no 9, article id 091019Article in journal (Refereed) Published
Abstract [en]
This work is a feasibility study of a 19-passenger hybrid-electric aircraft, to serve the short-haul segment within the 200-600 nautical miles. Its ambition is to answer some dominating research questions, during the evaluation and design of aircraft based on alternative propulsion architectures. The potential entry into service (EIS) is foreseen beyond 2030. A literature review is performed to identify similar concepts under research and development. After the requirements' definition, the first level of conceptual design is employed. The objective of design selections is driven by the need to reduce CO2 emissions and accommodate aircraft electrification with boundary layer ingestion engines. Based on a set of assumptions, a methodology for the sizing of the hybrid-electric aircraft is described to explore the basis of the design space, incorporating a parametric analysis for the consideration of boundary layer ingestion effects. Additionally, a methodology for the energy storage positioning is provided to highlight the multidisciplinary aspects between the sizing of an aircraft, the selected architecture (series/ parallel partial hybrid), and the storage characteristics. The results show that it is not possible to fulfill the initial design requirements (600 nmi) with a fully-electric aircraft configuration, due to the farfetched battery necessities. It is also highlighted that compliance with airworthiness standards is favored by switching to hybrid-electric aircraft configurations and relaxing the design requirements (targeted range, payload, battery technology). Finally, the lower degree of hybridization (40%) is observed to have a higher energy efficiency (-12% energy consumption) compared to the higher degree of hybridization (50%) and greater CO2 reduction, with respect to the conventional configuration.
Place, publisher, year, edition, pages
2021. Vol. 143, no 9, article id 091019
National Category
Aerospace Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-55894DOI: 10.1115/1.4050870ISI: 000692136500009Scopus ID: 2-s2.0-85126809276OAI: oai:DiVA.org:mdh-55894DiVA, id: diva2:1594897
2021-09-162021-09-162022-11-08Bibliographically approved