Security risks in cyber physical systems—A systematic mapping study
2021 (English)In: Journal of Software: Evolution and Process, ISSN 2047-7473, E-ISSN 2047-7481, Vol. 33, no 9, article id e2346Article, review/survey (Refereed) Published
Abstract [en]
The increased need for constant connectivity and complete automation of existing systems fuels the popularity of Cyber Physical Systems (CPS) worldwide. Increasingly more, these systems are subjected to cyber attacks. In recent years, many major cyber‐attack incidents on CPS have been recorded and, in turn, have been raising concerns in their users' minds. Unlike in traditional IT systems, the complex architecture of CPS consisting of embedded systems integrated with the Internet of Things (IoT) requires rather extensive planning, implementation, and monitoring of security requirements. One crucial step to planning, implementing, and monitoring of these requirements in CPS is the integration of the risk management process in the CPS development life cycle. Existing studies do not clearly portray the extent of damage that the unattended security issues in CPS can cause or have caused, in the incidents recorded. An overview of the possible risk management techniques that could be integrated into the development and maintenance of CPS contributing to improving its security level in its actual environment is missing. In this paper, we are set out to highlight the security requirements and issues specific to CPS that are discussed in scientific literature and to identify the state‐of‐the‐art risk management processes adopted to identify, monitor, and control those security issues in CPS. For that, we conducted a systematic mapping study on the data collected from 312 papers published between 2000 and 2020, focused on the security requirements, challenges, and the risk management processes of CPS. Our work aims to form an overview of the security requirements and risks in CPS today and of those published contributions that have been made until now, towards improving the reliability of CPS. The results of this mapping study reveal (i) integrity authentication and confidentiality as the most targeted security attributes in CPS, (ii) model‐based techniques as the most used risk identification and assessment and management techniques in CPS, (iii) cyber‐security as the most common security risk in CPS, (iv) the notion of “mitigation measures” based on the type of system and the underline internationally recognized standard being the most used risk mitigation technique in CPS, (v) smart grids being the most targeted systems by cyber‐attacks and thus being the most explored domain in CPS literature, and (vi) one of the major limitations, according to the selected literature, concerns the use of the fault trees for fault representation, where there is a possibility of runtime system faults not being accounted for. Finally, the mapping study draws implications for practitioners and researchers based on the findings.
Place, publisher, year, edition, pages
John Wiley & Sons, 2021. Vol. 33, no 9, article id e2346
Keywords [en]
Cyber Physical System (CPS), dependability attributes, Internet of Things (IoT), risk identification, risk assessment, risk mitigation, risk management, security, Supervisory Control and Data Acquisition (SCADA) system, systematic mapping study
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:mdh:diva-53899DOI: 10.1002/smr.2346ISI: 000639112700001Scopus ID: 2-s2.0-85104118729OAI: oai:DiVA.org:mdh-53899DiVA, id: diva2:1545050
2021-04-172021-04-172022-11-25Bibliographically approved