Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt198",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1017",{id:"formSmash:j_idt1017",widgetVar:"widget_formSmash_j_idt1017",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopus
#### Search in DiVA

##### By author/editor

Bäck, Per
##### By organisation

Educational Sciences and Mathematics
##### In the same journal

International Electronic Journal of Algebra
On the subject

Algebra and Logic
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1223",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[2,1,6,5,1,7,14,8,10,4]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1512435'}],ticks:["Feb -24","Mar -24","Apr -24","May -24","Jun -24","Jul -24","Aug -24","Sep -24","Oct -24","Nov -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 106 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1316",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt179",{id:"formSmash:upper:j_idt179",widgetVar:"widget_formSmash_upper_j_idt179",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt180_j_idt182",{id:"formSmash:upper:j_idt180:j_idt182",widgetVar:"widget_formSmash_upper_j_idt180_j_idt182",target:"formSmash:upper:j_idt180:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The hom-associative Weyl algebras in prime characteristicPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2022 (English)In: International Electronic Journal of Algebra, E-ISSN 1306-6048, Vol. 31, p. 203-229Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2022. Vol. 31, p. 203-229
##### Keywords [en]

hom-associative Ore extensions, hom-associative Weyl algebras, formal multi-parameter hom-associative deformations, formal multi-parameter hom-Lie deformations
##### National Category

Algebra and Logic
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-52930DOI: 10.24330/ieja.1058430ISI: 000747123800013Scopus ID: 2-s2.0-85127490293OAI: oai:DiVA.org:mdh-52930DiVA, id: diva2:1512435
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt495",{id:"formSmash:j_idt495",widgetVar:"widget_formSmash_j_idt495",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt501",{id:"formSmash:j_idt501",widgetVar:"widget_formSmash_j_idt501",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt507",{id:"formSmash:j_idt507",widgetVar:"widget_formSmash_j_idt507",multiple:true}); Available from: 2020-12-23 Created: 2020-12-23 Last updated: 2024-01-16Bibliographically approved
##### In thesis

We introduce the first hom-associative Weyl algebras over a field of prime characteristic as a generalization of the first associative Weyl algebrain prime characteristic. First, we study properties of hom-associative algebras constructed from associative algebras by a general “twisting” procedure. Then, with the help of these results, we determine the commuter, center, nuclei, and set of derivations of the first hom-associative Weyl algebras. We also classify them up to isomorphism, and show, among other things, that all nonzero endomorphisms on them are injective, but not surjective. Last, we show that they can be described as a multi-parameter formal hom-associative deformation of the first associative Weyl algebra, and that this deformation induces a multi-parameter formal hom-Lie deformation of the corresponding Lie algebra, when using the commutator as bracket.

1. On Hom-associative Ore Extensions$(function(){PrimeFaces.cw("OverlayPanel","overlay1654030",{id:"formSmash:j_idt792:0:j_idt796",widgetVar:"overlay1654030",target:"formSmash:j_idt792:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1245",{id:"formSmash:j_idt1245",widgetVar:"widget_formSmash_j_idt1245",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1298",{id:"formSmash:lower:j_idt1298",widgetVar:"widget_formSmash_lower_j_idt1298",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1299_j_idt1301",{id:"formSmash:lower:j_idt1299:j_idt1301",widgetVar:"widget_formSmash_lower_j_idt1299_j_idt1301",target:"formSmash:lower:j_idt1299:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});