Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt187",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt989",{id:"formSmash:j_idt989",widgetVar:"widget_formSmash_j_idt989",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
####

#### Search in DiVA

##### By author/editor

Muhumuza, Asaph KeikaraLundengård, KarlMalyarenko, AnatoliySilvestrov, Sergei
##### By organisation

Educational Sciences and Mathematics
On the subject

Mathematics
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1193",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[2,5,3,1,1,2,3,8,7,3]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1476433'}],ticks:["Jun -22","Sep -22","Oct -22","Jan -23","Nov -23","Apr -24","May -24","Jul -24","Aug -24","Sep -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 84 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1293",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt167",{id:"formSmash:upper:j_idt167",widgetVar:"widget_formSmash_upper_j_idt167",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt168_j_idt170",{id:"formSmash:upper:j_idt168:j_idt170",widgetVar:"widget_formSmash_upper_j_idt168_j_idt170",target:"formSmash:upper:j_idt168:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Extreme points of the Vandermonde Determinant and Wishart Ensemble on Symmetric ConesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt248",{id:"formSmash:j_idt248",widgetVar:"widget_formSmash_j_idt248",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### Keywords [en]

Vandermonde Determinant, Jordan Algebras, Symmetric Cones, Wishart Joint Eigenvalue Distributions
##### National Category

Mathematics
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-51524OAI: oai:DiVA.org:mdh-51524DiVA, id: diva2:1476433
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt468",{id:"formSmash:j_idt468",widgetVar:"widget_formSmash_j_idt468",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt474",{id:"formSmash:j_idt474",widgetVar:"widget_formSmash_j_idt474",multiple:true}); Available from: 2020-10-14 Created: 2020-10-14 Last updated: 2020-11-11Bibliographically approved
##### In thesis

In this paper we demonstrate the extreme points of the Wishart joint eigenvalue probability distributions in higher dimension based on the boundary points of the symmetric cones in Jordan algebras. The extreme of points of the Vandermonde determinant are defined to be a set of boundary points of the symmetric cones that occur in both the discrete and continuous part of the Gindikin set. The symmetric cones form a basis for the construction of thedegenerate and non-degenerate Wishart ensembles in Herm(m;C), Herm(m;H), Herm(3;O) denotes respectively the Jordan algebra of all Hermitian matrices of size m x m with complex entries, the skew field H of quaternions, and the algebra O of octonions.

1. Extreme points of the Vandermonde determinant in numerical approximation, random matrix theory and financial mathematics$(function(){PrimeFaces.cw("OverlayPanel","overlay1476857",{id:"formSmash:j_idt765:0:j_idt769",widgetVar:"overlay1476857",target:"formSmash:j_idt765:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1220",{id:"formSmash:j_idt1220",widgetVar:"widget_formSmash_j_idt1220",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1275",{id:"formSmash:lower:j_idt1275",widgetVar:"widget_formSmash_lower_j_idt1275",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1276_j_idt1278",{id:"formSmash:lower:j_idt1276:j_idt1278",widgetVar:"widget_formSmash_lower_j_idt1276_j_idt1278",target:"formSmash:lower:j_idt1276:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});