https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Convergence of Summation-by-Parts Finite Difference Methods for the Wave Equation
Uppsala universitet, Sweden. (MAM)
Uppsala universitet, Sweden.
2017 (English)In: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 71, no 1, p. 219-245Article in journal (Refereed) Published
Abstract [en]

When using a finite difference method to solve a time dependent partial differential equation, the truncation error is often larger at a few grid points near a boundary or grid interface than in the interior. In computations, the observed convergence rate is often higher than the order of the large truncation error. In this paper, we develop techniques for analyzing this phenomenon, and particularly consider the second order wave equation. The equation is discretized by a finite difference operator satisfying a summation by parts property, and the boundary and grid interface conditions are imposed weakly by the simultaneous approximation term method. It is well-known that if the semi-discretized wave equation satisfies the determinant condition, that is the boundary system in Laplace space is nonsingular for all Re(s) ≥ 0 , two orders are gained from the large truncation error localized at a few grid points. By performing a normal mode analysis, we show that many common discretizations do not satisfy the determinant condition at s= 0. We then carefully analyze the error equation to determine the gain in the convergence rate. The result shows that stability does not automatically imply a gain of two orders in the convergence rate. The precise gain can be lower than, equal to or higher than two orders, depending on the boundary condition and numerical boundary treatment. The accuracy analysis is verified by numerical experiments, and very good agreement is obtained. 

Place, publisher, year, edition, pages
Springer New York LLC , 2017. Vol. 71, no 1, p. 219-245
National Category
Mathematics
Identifiers
URN: urn:nbn:se:mdh:diva-50769DOI: 10.1007/s10915-016-0297-3ISI: 000398062500009Scopus ID: 2-s2.0-84988712031OAI: oai:DiVA.org:mdh-50769DiVA, id: diva2:1469576
Available from: 2020-09-22 Created: 2020-09-22 Last updated: 2020-09-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Wang, Siyang

Search in DiVA

By author/editor
Wang, Siyang
In the same journal
Journal of Scientific Computing
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf