https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adaptive differential evolution with a new joint parameter adaptation method
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-3425-3837
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-9857-4317
2020 (English)In: Soft Computing - A Fusion of Foundations, Methodologies and Applications, ISSN 1432-7643, E-ISSN 1433-7479, Vol. 24, no 17, p. 12801-12819Article in journal (Refereed) Published
Abstract [en]

Differential evolution (DE) is a population-based metaheuristic algorithm that has been proved powerful in solving a wide range of real-parameter optimization tasks. However, the selection of the mutation strategy and control parameters in DE is problem dependent, and inappropriate specification of them will lead to poor performance of the algorithm such as slow convergence and early stagnation in a local optimum. This paper proposes a new method termed as Joint Adaptation of Parameters in DE (JAPDE). The key idea lies in dynamically updating the selection probabilities for a complete set of pairs of parameter generating functions based on feedback information acquired during the search by DE. Further, for mutation strategy adaptation, the Rank-Based Adaptation (RAM) method is utilized to facilitate the learning of multiple probability distributions, each of which corresponds to an interval of fitness ranks of individuals in the population. The coupling of RAM with JAPDE results in the new RAM-JAPDE algorithm that enables simultaneous adaptation of the selection probabilities for pairs of control parameters and mutation strategies in DE. The merit of RAM-JAPDE has been evaluated on the benchmark test suit proposed in CEC2014 in comparison to many well-known DE algorithms. The results of experiments demonstrate that the proposed RAM-JAPDE algorithm outperforms or is competitive to the other related DE variants that perform mutation strategy and control parameter adaptation, respectively.

Place, publisher, year, edition, pages
SPRINGER , 2020. Vol. 24, no 17, p. 12801-12819
Keywords [en]
Differential evolution, Evolutionary computation, Control parameter adaptation, Mutation strategy adaptation
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:mdh:diva-50606DOI: 10.1007/s00500-020-05182-2ISI: 000550620400003Scopus ID: 2-s2.0-85088256080OAI: oai:DiVA.org:mdh-50606DiVA, id: diva2:1469180
Available from: 2020-09-21 Created: 2020-09-21 Last updated: 2020-10-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Leon, MiguelXiong, Ning

Search in DiVA

By author/editor
Leon, MiguelXiong, Ning
By organisation
Embedded Systems
In the same journal
Soft Computing - A Fusion of Foundations, Methodologies and Applications
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf