https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-7576-760x
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-1351-9245
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3485-5440
2020 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 276, article id 115499Article in journal (Refereed) Published
Abstract [en]

The growing share of intermittent renewable energy sources for power generation indicates an increasing demand for flexibility in the energy system. Energy storage technologies ensure a balance between demand and supply and increase the system flexibility. This study investigates increased application of renewable energy resources at a regional scale. Power-to-gas storage that interacts with a large-scale rooftop photovoltaic system is added to a regional energy system dominated by combined heat and power plants. The study addresses the influence of the storage system on the production planning of the combined heat and power plants and the system flexibility. The system is modeled and the product costs are optimized using the Mixed Integer Linear Programming method, as well as considering the effects on CO2 emissions and power import into the regional system. The optimization model is investigated by developing different scenarios for the capacity and cost of the storage system. The results indicate that the proposed storage system increases the system flexibility and can reduce power imports and the marginal emissions by around 53%, compared with the current energy system. There is a potential to convert a large amount of excess power to hydrogen and store it in the system. However, because of low efficiency, a fuel cell cannot significantly contribute to power regeneration from the stored hydrogen. Therefore, for about 70% of the year, the power is imported to the optimized system to compensate the power shortfalls rather than to use the fuel cell. 

Place, publisher, year, edition, pages
Oxford: Elsevier Ltd , 2020. Vol. 276, article id 115499
Keywords [en]
Flexibility, Hydrogen, Optimization, Power-to-gas, Production planning, Renewable energy sources, Cogeneration plants, Fuel cells, Hydrogen storage, Integer programming, Photovoltaic cells, Production control, Renewable energy resources, Energy storage technologies, Mixed integer linear programming, Optimization modeling, Regional energy systems, Renewable energy source, Rooftop photovoltaic systems, System flexibility, Electric power system interconnection, alternative energy, combined heat and power, energy resource, energy storage, fuel cell, photovoltaic system, power generation
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-49483DOI: 10.1016/j.apenergy.2020.115499ISI: 000571786500002Scopus ID: 2-s2.0-85088401042OAI: oai:DiVA.org:mdh-49483DiVA, id: diva2:1456750
Available from: 2020-08-06 Created: 2020-08-06 Last updated: 2021-04-29Bibliographically approved
In thesis
1. Production Planning of CHP plants in transition towards energy systems with high share of renewables
Open this publication in new window or tab >>Production Planning of CHP plants in transition towards energy systems with high share of renewables
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The global energy system is undergoing a transformative change towards renewable energies. The share of Renewable Energy Sources (RES) and bioenergy in the world’s primary energy use has increased in the recent years. Based on the EU Roadmap 2050 energy plan, the share of renewables in final energy use in Europe will reach at least 55%, a 45% increase from its share today.

Due to the intermittent energy supply from renewables, their high penetration in energy systems can jeopardize the system flexibility, in terms of the balance between energy demand and supply. Lack of system flexibility could cause energy curtailments, increase system costs, or make renewables unreliable sources of energy. Moreover, the expansion of the renewable energy supply could influence the operational strategy of existing energy systems like Combined Heat and Power (CHP) plants. Therefore, the current study focuses on increasing system flexibility of a CHP-dominated regional energy system with increased renewable power supply. Two flexibility options, including a polygeneration strategy and large-scale energy storage using power-to-gas technology, were modelled. The system is then optimized using a Mixed Integer Linear Programming (MILP) method to investigate the production planning of CHP plants in a renewable-based energy system with higher level of flexibility. Different technical and market factors could influence the results of the optimization model, and thereby system flexibility. Thus, the study is carried out under various scenarios for better understanding of the future challenges regarding energy supply, market prices, and climate change.

The investigation provides an increased knowledge of production planning for the existing CHP plants with increased interaction with renewables. Based on the overall observations of this thesis, the proposed power storage system contributes to the increased system flexibility. However, the study suggests polygeneration and integration strategy as the optimal pathway to increase RES penetration and to support system flexibility, considering future energy developments and changes in energy demand and supply.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2021
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 335
National Category
Energy Systems Energy Engineering
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-54037 (URN)978-91-7485-507-4 (ISBN)
Public defence
2021-06-18, Delta + digitalt via Zoom, Mälardalens högskola, Västerås, 09:00 (English)
Opponent
Supervisors
Available from: 2021-04-29 Created: 2021-04-29 Last updated: 2021-07-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Daraei, MahsaCampana, Pietro EliaThorin, Eva

Search in DiVA

By author/editor
Daraei, MahsaCampana, Pietro EliaThorin, Eva
By organisation
Future Energy Center
In the same journal
Applied Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 213 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf