We show that, having a Hom-Lie algebra and an element of its dual vector space that satisfies certain conditions, one can construct a ternary totally skew-symmetric bracket and prove that this ternary bracket satisfies the Hom-Filippov-Jacobi identity, i.e. this ternary bracket determines the structure of 3-Hom-Lie algebra on the vector space of a Hom-Lie algebra. Then we apply this construction to two Hom-Lie algebras constructed on an associative, commutative algebra using σ-derivation and involution, and we obtain two 3-Hom-Lie algebras.