https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Uncertainty in Hourly Readings from District Heat Billing Meters
Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Eskilstuna Kommunfastighet, Eskilstuna, Sweden.ORCID iD: 0000-0003-3530-0209
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-7233-6916
2019 (English)In: Proceedings of SIMS 2019, Linköping: Linköping University Electronic Press, Linköpings universitet , 2019Conference paper, Published paper (Refereed)
Abstract [en]

Hourly energy readings from heat billing meters are valuable data source for the energy performance assessment of district heating substations and the buildings they serve. The quality of such analyses is bounded by the accuracy of the hourly readings. Thus, assessing the accuracy of the hourly heat meter readings is a necessary (but often overlooked) first step to ensure qualitative subsequent analyses. Due to often limited bandwidth capacity hourly readings are quantized before transmission, which can cause severe information loss. In this paper, we study 266 Swedish heat meters and assess the quantization effect by information entropy ranking. Further, a detailed comparison is conducted with three heat meters with typically occurring quantization errors. Uncertainty due to the quantization effect is compared with the uncertainty due to typical accuracy of the meter instrumentation. A method to conflate information from both energy readings and energy calculated from flow and temperature readings is developed. The developed conflation method is shown to be able to decrease uncertainty for heat meters with severely quantized energy readings. However, it is concluded that a preferable approach is to work with the heat meter infrastructure to ensure the future recorded readings holds high enough quality to be useful for energy performance assessments with hourly or sub-hourly readings.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, Linköpings universitet , 2019.
Series
Linköping Electronic Conference Proceedings, ISSN 1650-3686, E-ISSN 1650-3740
Keywords [en]
heat meters, uncertainty, district heating, information entropy, EN 1434
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:mdh:diva-49376DOI: 10.3384/ecp20170212OAI: oai:DiVA.org:mdh-49376DiVA, id: diva2:1452359
Conference
The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden
Available from: 2020-07-06 Created: 2020-07-06 Last updated: 2020-07-06Bibliographically approved
In thesis
1. Probabilistic Calibration of Building Energy Models: For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings
Open this publication in new window or tab >>Probabilistic Calibration of Building Energy Models: For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is a global need to reduce energy consumption and integrate a larger share of renewable energy production while meeting expectations for human well-being and economic growth. Buildings have a key role to play in this transition to more sustainable cities and communities.

Building energy modeling (BEM) and simulation are needed to gain detailed knowledge ofthe heat flows and parameters that determine the thermal energy performance of a building. Remote sensing techniques have enabled the generation of geometrical representations of existing buildings on the scale of entire cities. However, parameters describing the thermal properties ofthe building envelope and the technical systems are usually not readily accessible in a digitized form and need to be inferred. Further, buildings are complex systems with indoor environmental conditions that vary dynamically under the stochastic influence of weather and occupant behavior and the availability of metering data is often limited. Consequently, robust inference is needed to handle high and time-varying uncertainty and a varying degree of data availability.

This thesis starts with investigation of meteorological reanalyses, remote sensing and onsite metering data sources. Next, the developed dynamic and physics-based BEM, consisting of a thermal network and modeling procedures for the technical systems, passive heat gains and boundary conditions, is presented. Finally, the calibration framework is presented, including a method to transform a deterministic BEM into a fully probabilistic BEM, an iterated extended Kalman filtering algorithm and a probabilistic calibration procedure to infer uncertain parameters and incorporate prior knowledge.

The results suggest that the proposed BEM is sufficiently detailed to provide actionable insights, while remaining identifiable given a sufficiently informative prior model. Such a prior model can be obtained based solely on knowledge of the underlying physical properties of the parameters, but also enables incorporation of more specific information about the building. The probabilistic calibration approach has the capability to combine evidence from both data and knowledge-based sources; this is necessary for robust inference given the often highly uncertain reality in which buildings operate.

The contributions of this thesis bring us a step closer to producing models of existing buildings, on the scale of whole cities, that can simulate reality sufficiently well to gain actionable insights on thermal energy performance, enable buildings to act as active components of the energy system and ultimately increase the operational resilience of the built environment.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2020
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 318
National Category
Energy Systems
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-49378 (URN)978-91-7485-473-2 (ISBN)
Public defence
2020-09-10, Milos + digital (Zoom), Mälardalens högskola, Västerås, 10:00 (English)
Opponent
Supervisors
Available from: 2020-07-06 Created: 2020-07-06 Last updated: 2020-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Lundström, LukasDahlquist, Erik

Search in DiVA

By author/editor
Lundström, LukasDahlquist, Erik
By organisation
Future Energy Center
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf