Fueled by an increasing demand for computational power and high data-rate low-latency on-board communication, the automotive electrical and electronic architectures are evolving from distributed to consolidated domain and centralised architectures. Future electrical and electronic automotive architectures are envisioned to leverage heterogeneous computing platforms, where several different processing units will be embedded within electronic control units. These powerful control units are expected to be connected by high-bandwidth and low-latency on-board backbone networks. This paper draws on the industrial collaboration with the Swedish automotive industry for tackling the challenges associated to the model-based development of predictable embedded software for contemporary and evolving automotive E/E architectures.