Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt187",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt989",{id:"formSmash:j_idt989",widgetVar:"widget_formSmash_j_idt989",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopus
#### Authority records

Bäck, PerRichter, Johan
#### Search in DiVA

##### By author/editor

Bäck, PerRichter, Johan
##### By organisation

Educational Sciences and Mathematics
##### In the same journal

Journal of Pure and Applied Algebra
On the subject

Algebra and Logic
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1193",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[6,1,3,1,4,6,8,7,10,9]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1423638'}],ticks:["Apr -23","Sep -23","Oct -23","Dec -23","Mar -24","Apr -24","May -24","Jul -24","Aug -24","Sep -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 148 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1293",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt167",{id:"formSmash:upper:j_idt167",widgetVar:"widget_formSmash_upper_j_idt167",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt168_j_idt170",{id:"formSmash:upper:j_idt168:j_idt170",widgetVar:"widget_formSmash_upper_j_idt168_j_idt170",target:"formSmash:upper:j_idt168:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the hom-associative Weyl algebrasPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2020 (English)In: Journal of Pure and Applied Algebra, ISSN 0022-4049, E-ISSN 1873-1376, Vol. 224, no 9Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2020. Vol. 224, no 9
##### Keywords [en]

Dixmier conjecture, hom-associative Ore extensions, hom-associative Weyl algebras, formal hom-associative deformations, formal hom-Lie deformations
##### National Category

Algebra and Logic
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-47517DOI: 10.1016/j.jpaa.2020.106368ISI: 000526412900010Scopus ID: 2-s2.0-85081039720OAI: oai:DiVA.org:mdh-47517DiVA, id: diva2:1423638
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt468",{id:"formSmash:j_idt468",widgetVar:"widget_formSmash_j_idt468",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt474",{id:"formSmash:j_idt474",widgetVar:"widget_formSmash_j_idt474",multiple:true}); Available from: 2020-04-15 Created: 2020-04-15 Last updated: 2022-04-25Bibliographically approved
##### In thesis

The first (associative) Weyl algebra is formally rigid in the classical sense. In this paper, we show that it can however be formally deformed in a nontrivial way when considered as a so-called hom-associative algebra, and that this deformation preserves properties such as the commuter, while deforming others, such as the center, power associativity, the set of derivations, and some commutation relations. We then show that this deformation induces a formal deformation of the corresponding Lie algebra into what is known as a hom-Lie algebra, when using the commutator as bracket. We also prove that all homomorphisms between any two purely hom-associative Weyl algebras are in fact isomorphisms. In particular, all endomorphisms are automorphisms in this case, hence proving a hom-associative analogue of the Dixmier conjecture to hold true.

1. On Hom-associative Ore Extensions$(function(){PrimeFaces.cw("OverlayPanel","overlay1654030",{id:"formSmash:j_idt765:0:j_idt769",widgetVar:"overlay1654030",target:"formSmash:j_idt765:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1220",{id:"formSmash:j_idt1220",widgetVar:"widget_formSmash_j_idt1220",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1275",{id:"formSmash:lower:j_idt1275",widgetVar:"widget_formSmash_lower_j_idt1275",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1276_j_idt1278",{id:"formSmash:lower:j_idt1276:j_idt1278",widgetVar:"widget_formSmash_lower_j_idt1276_j_idt1278",target:"formSmash:lower:j_idt1276:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});