Floor heating and radiators are two of the most common types of hydronic heating systems used for space heating in single-family houses in cold climate regions. Notwithstanding, there are few comparative studies on indoor temperature distribution and system cost evaluations for radiators and floor heating. Furthermore, there are no aligned outcomes in terms of total heat supply for a single-family house with radiators or floor heating. In this study, the effect of building energy efficiency level and construction type, including flooring material, on the supply heating demand and transmission heat losses were studied for both radiator and floor heating systems. For this purpose, a single-family house located in Vaxjo, Sweden, was modeled as a case study. The heating demand was supplied with a district heating system with a similar supply temperature at 45 degrees C for both the radiator and floor heating system. A sensitivity analysis was also performed to assess the effect of flooring configurations on the annual supply heating demand for both conventional and passive versions of the case-study building. The results showed that the radiator-integrated building had a lower supply heating demand in comparison with the floor heating-integrated buildings. Based on the sensitivity studies, the flooring material did not have a significant influence on the supply heating demand and on the transmission heat losses in the case of the radiators. The supply heating demand was only reduced up to 3% if the flooring U-value was improved by 60%. The results also showed that refurbishment in a standard conventional building with a radiator heating system based on the passive criteria led to a 58% annual energy savings, while this amount for a building with a floor heating system was approximately 49%.