https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of Stopping Criteria for Ranks in Solving Linear Systems
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. Department of Mathematics, School of Physical Sciences, Makerere University, Kampala, Uganda. (MAM)
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. Department of Mathematics, College of Natural and Applied Sciences, University of Dar es Salaam,Tanzania. (MAM)ORCID iD: 0000-0001-7822-2103
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. (MAM)ORCID iD: 0000-0002-1624-5147
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. (MAM)ORCID iD: 0000-0003-4554-6528
2019 (English)In: Data Analysis and Applications 1: Clustering and Regression, Modeling‐estimating, Forecasting and Data Mining, Volume 2 / [ed] Christos H. Skiadas, James R. Bozeman, John Wiley & Sons, 2019, Chapter 10, p. 137-152Chapter in book (Refereed)
Abstract [en]

Bioinformatics, internet search engines (web pages) and social networks are some of the examples with large and high sparsity matrices. For some of these systems, only the actual ranks of the solution vector is interesting rather than the vector itself. In this case, it is desirable that the stopping criterion reflects the error in ranks rather than the residual vector that might have a lower convergence. This chapter evaluates stopping criteria on Jacobi, successive over relaxation (SOR) and power series iterative schemes. Numerical experiments were performed and results show that Kendall's correlation coefficient gives good stopping criterion of ranks for linear system of equations. The chapter focuses on the termination criterion as means of obtaining good ranks. It outlines some studies carried out on stopping criteria in solving the linear system.

Place, publisher, year, edition, pages
John Wiley & Sons, 2019, Chapter 10. p. 137-152
Keywords [en]
Jacobi scheme, Kendall's correlation coefficient, linear system, power series iterative scheme, solution vector ranks, stopping criteria, successive over relaxation scheme
National Category
Computational Mathematics
Research subject
Mathematics/Applied Mathematics
Identifiers
URN: urn:nbn:se:mdh:diva-46719DOI: 10.1002/9781119597568.ch10Scopus ID: 2-s2.0-85102156515ISBN: 9781119597568 (electronic)ISBN: 9781786303820 (print)OAI: oai:DiVA.org:mdh-46719DiVA, id: diva2:1385948
Funder
Sida - Swedish International Development Cooperation AgencyAvailable from: 2020-01-16 Created: 2020-01-16 Last updated: 2021-03-26Bibliographically approved
In thesis
1. Analytical and Iterative Methods of Computing PageRank of Networks
Open this publication in new window or tab >>Analytical and Iterative Methods of Computing PageRank of Networks
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is about variants of PageRank, methods of PageRank computation and perturbation analysis of a PageRank vector as a stationary distribution of a kind of perturbed Markov chain model. 

Chapter 2 of this thesis gives closed form formulae for ordinary and lazy PageRanks for some specific simple line graphs. Different cases of changes made to the simple line graph are considered and for each case, a corresponding formula for each of the two variants of PageRank is provided.

Chapter 3 is dedicated to the exploration of relationships that exist between three known variants of PageRank: ordinary PageRank, lazy PageRank and random walk with backstep PageRank in terms of their convergence and consistency in rank scores for different graph structures with reference to PageRank parameters, the damping factor c and backstep parameter β. 

In Chapter 4, we discuss numerical methods used in solving the PageRank problem as a linear system and evaluate some stopping criteria that can be employed in such methods. 

Finally, in Chapter 5, we address the PageRank problem as a first order perturbed Markov chain problem and study the perturbation analysis for stationary distributions of Markov chains with damping component. We illustrate our results on asymptotic perturbation analysis by using different computational examples.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2020
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 325
National Category
Probability Theory and Statistics
Research subject
Mathematics/Applied Mathematics
Identifiers
urn:nbn:se:mdh:diva-51390 (URN)978-91-7485-482-4 (ISBN)
Public defence
2020-11-20, Kappa +(Zoom), Mälardalens högskola, Västerås, 10:15 (English)
Opponent
Supervisors
Available from: 2020-10-09 Created: 2020-10-08 Last updated: 2020-11-09Bibliographically approved
2. Perturbed Markov Chains with Damping Component and Information Networks
Open this publication in new window or tab >>Perturbed Markov Chains with Damping Component and Information Networks
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis brings together three thematic topics, PageRank of evolving tree graphs, stopping criteria for ranks and perturbed Markov chains with damping component. The commonality in these topics is their focus on ranking problems in information networks. In the fields of science and engineering, information networks are interesting from both practical and theoretical perspectives. The fascinating property of networks is their applicability in analysing broad spectrum of problems and well established mathematical objects. One of the most common algorithms in networks' analysis is PageRank. It was developed for web pages’ ranking and now serves as a tool for identifying important vertices as well as studying characteristics of real-world systems in several areas of applications. Despite numerous successes of the algorithm in real life, the analysis of information networks is still challenging. Specifically, when the system experiences changes in vertices /edges or it is not strongly connected or when a damping stochastic matrix and a damping factor are added to an information matrix. For these reasons, extending existing or developing methods to understand such complex networks is necessary.

Chapter 2 of this thesis focuses on information networks with no bidirectional interaction. They are commonly encountered in ecological systems, number theory and security systems. We consider certain specific changes in a network and describe how the corresponding information matrix can be updated as well as PageRank scores. Specifically, we consider the graph partitioned into levels of vertices and describe how PageRank is updated as the network evolves.

In Chapter 3, we review different stopping criteria used in solving a linear system of equations and investigate each stopping criterion against some classical iterative methods. Also, we explore whether clustering algorithms may be used as stopping criteria.

Chapter 4 focuses on perturbed Markov chains commonly used for the description of information networks. In such models, the transition matrix of an information Markov chain is usually regularised and approximated by a stochastic (Google type) matrix. Stationary distribution of the stochastic matrix is equivalent to PageRank, which is very important for ranking of vertices in information networks. Determining stationary probabilities and related characteristics of singularly perturbed Markov chains is complicated; leave alone the choice of regularisation parameter. We use the procedure of artificial regeneration for the perturbed Markov chain with the matrix of transition probabilities and coupling methods. We obtain ergodic theorems, in the form of asymptotic relations. We also derive explicit upper bounds for the rate of convergence in ergodic relations. Finally, we illustrate these results with numerical examples.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2020
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 326
National Category
Mathematics
Research subject
Mathematics/Applied Mathematics
Identifiers
urn:nbn:se:mdh:diva-51550 (URN)978-91-7485-485-5 (ISBN)
Public defence
2020-12-10, Lambda +(Online Zoom), Mälardalens högskola, Västerås, 15:15 (English)
Opponent
Supervisors
Available from: 2020-10-19 Created: 2020-10-15 Last updated: 2020-11-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttps://onlinelibrary.wiley.com/doi/10.1002/9781119597568.ch10

Search in DiVA

By author/editor
Abola, BenardBiganda, PitosEngström, ChristopherSilvestrov, Sergei
By organisation
Educational Sciences and Mathematics
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 728 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf